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Abstract

In the physical setting of 2+1D gauge theories broken down to a finite group, the quan-
tum double is the natural mathematical construct to describe the physical excitations,
which may carry both topological and regular charges.

Furthermore, when taking this quantum double symmetry as a starting point, one
is led to symmetry breaking in such theories, providing a description of condensates of
electrical, magnetic or dyonic particles.

We have applied this formalism to almost all possible condensates of quantum dou-
bles of the even dihedral groups. Most of these condensates follow a general scheme in
their discription of the residual symmetry and confinement, but we also present new re-
sults for some special cases, for which the standard analysis does not apply. Although
we are able to find particular solutions in these cases, it has not yet led to a general
extension of the existing framework.
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Introduction

Symmetry and symmetry breaking The concept of symmetry is widely regarded
as a very fundamental principle in many areas of physics. A system is symmetric
if its physical properties are unchanged after a certain symmetry transformation. All
transformations that leave the system invariant together form a group, the symmetry
group.

There are many kinds of symmetry. We may distinguish between external symme-
try, in which the system is left invariant by transformations in spacetime, or equiva-
lently by coordinate transformations, and internal symmetry, when a system carries a
so-called internal space which is acted on by a symmetry group; this internal symmetry
is not directly measurable, but allows for example for the classification of particles in
multiplets, leading to physical understanding of particles found in nature and created
in particle accelerators.

Another important notion is that of global and local symmetry. For global symme-
try, the transformation is the same in all of spacetime. A local symmetry transformation
may differ from point to point. In (quantum) field theory, local symmetry gives rise to
gauge fields, which are generally interpreted as carriers of the fundamental forces.

Now symmetry may be explicitly broken by an external potential, by which we
mean that the system (to be more precise the action or Lagrangian) is no longer in-
variant under the full symmetry group, but rather under one of its subgroups. Another
phenomenon is spontaneous symmetry breaking, where the action is left invariant under
the full group, but the groundstate has become degenerate, and one of many ground-
states will be ‘spontaneously chosen’. This is sometimes referred to as the ‘vacuum
acquiring an expectation value’. The symmetry transformations that still leave this
groundstate invariant form a subgroup, called the residual symmetry group.

What we will do in this thesis is to extend the concept of a symmetry group to a
Hopf algebra, which can be viewed as a generalization of a group, through the use of
the so-called quantum double construction. This yields a natural realization of braid
statistics and allows for prescriptions for multiple-particle states and anti-particles, a
formalism for symmetry breaking, which will also incorporate other features of the
theories described below.

Topological interactions and 2+1-dimensional physics A topological defect can
be viewed as an excitation of the system whose quantum number does not fit in the
symmetry describing that system. It arises as a collective behaviour of the particles.
To be more precise, the defects are discontinuities of the order parameter, which is
some vector-valued function defined on every point in space. They can be zero-, one-
or higher-dimensional. Some examples are the eye of a whirlwind, flux tubes in type-II
superconductors and domain walls in ferromagnets. In theoretical high energy physics,

vi
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there have been many proposals for topological defects such as skyrmions and magnetic
monopoles.

In a system with topological defects, there can be so-called topological interactions
between the defects, or between a defect and a fundamental (gauge) charge. These
topological interactions do not manifest themselves as interaction terms in the Hamil-
tonian, but as consequences of the topological properties of the configuration space of
the system.

The typical example is the Aharonov–Bohm effect: the vector potential induced
by an infinitely long solenoid can influence the interference pattern of two electrically
charged particles, even if these particles travel only through regions where the magnetic
field is zero. The solenoid in this case constitutes a ‘hole’ in the plane on which the
particles move, which makes the configuration space topological non-trivial.

Defects are classified using homotopy theory. Basically, this describes in what way
loops of surfaces in configuration space are non-contractible. A loop can determine
defects of dimension two smaller than the dimension of the space (e.g. so point defects
in two-dimensional and line defects in three-dimensional space). We turn to discrete
gauge theories in 2+1 dimensions, because in that case the inequivalent point defects
will be labelled by elements of the residual symmetry group.

Using this classification, we can think of defects as particles carrying topological
charges. The topological charge may affect other defects or particles with fundamen-
tal charge through topological interactions. Because of the structure imposed by these
interactions, they can be described by representations, just as we do for gauge transfor-
mations on fundamental charges.

If the group labelling the defects is non-Abelian, topological interactions may cause
a defect that circumvents another to change its topological charge: it gets conjugated
by the group value of the circumvented defect. This is called flux metamorphosis [4].
The result is that topological charges should be organized in conjugacy classes, rather
than group elements. We can say that the particle has an internal space of dimension
equal to the number of elements in the conjugacy class.

Braid statistics Because of topological interactions, the interchange of two particles
need not just be given by a factor of +1 (Bose–Einstein statistics) or -1 (Fermi–Dirac
statistics, which are the values obtained by the two one-dimensional representations
of the permutation group. The particles (and defects) obey braid statistics, that is,
interchanges are governed by the action of the braid group (of which the permutation
group is a subgroup).

If the gauge group is Abelian, we get one-dimensional representations of the braid
group, which can just give any phase factor under interchange, hence the name anyons.
For non-Abelian gauge groups, the braiding is more complex.

The details of discrete gauge theories, with topological interactions and braid statis-
tics are summarized in chapter 1.

The quantum double construction treats topological and fundamental charges on
the same level (they label the representations of the symmetry algebra) and also tells
us how to perform braiding of the different particles. It is then also straightforward to
describe particles carrying both topological and fundamental charge, which are called
dyons. In analogy with quantum electrodynamics, we will say that particles with fun-
damental charge form the electric sector, and topological charges form the magnetic
sector. This is complemented by the dyonic sector.

Braid statistics seems to capture the essence of physics in 2+1 dimensions. Since
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the first proposal by Wilczek [50] of Abelian anyons, the concept has been studied thor-
oughly up to this day. Fractional quantum Hall systems are currently regarded as the
most promising to show (quasi-)particles obeying fractional an non-Abelian statistics.
Some references to recent work are given in the concluding remarks (chap. 7).

Hopf symmetry breaking To summarize, in discrete gauge theory in 2+1 dimen-
sions, we find particles with fundamental and/or topological charge, which have topo-
logical interactions, leading to certain braid statistics. The insight reviewed in [52]
was that the mathematical construction of the quantum double D(H) of the unbroken
gauge group H, which is a special form of a Hopf algebra, contains all information
to describe such theories: its irreducible representations, which label the spectrum of
particles, depend on both the fundamental and the topological charge. Furthermore, it
provides a description for braiding, and for multi-particle states and fusion of particles.
This is explained in chapter 2.

The next step, taken in [6, 7], was to consider the breaking of these Hopf symme-
tries and the formation of the equivalent of Bose–Einstein condensates. When a group
symmetry is broken, the residual symmetry group is simply the subgroup of transfor-
mations that leave the spontaneously chosen groundstate, which can be regarded as a
condensate of particles in that state, invariant.

We want to have an analogous description of the breaking of a Hopf symmetry
algebra A . However, for an algebra the demand that a symmetry transformation leaves
the groundstate invariant breaks down, because two such transformations may add up
to zero. An adapted demand takes this into account, making use of the additional
structure of a Hopf algebra. The result is a sub-Hopf algebra, the residual symmetry
algebra T .

The irreducible representations of the residual symmetry algebra form the particle
spectrum in the condensate state. Some of these particles will be confined, namely
when they do not braid trivially with the condensate particles, as in that case ‘moving
around in the condensate’ will cost energy proportional to the distance travelled due
to topological interactions. The particles that are not confined are representations of
another algebra, the unconfined algebra U .

Many properties of the original algebra A will be carried over to T and U . The
formalism of Hopf symmetry breaking and subsequent confinement will be the subject
of chapter 3.

Quantum doubles of even dihedral groups The first discrete groups to consider are
the finite subgroups of the gauge group of proper rotations SO(3). Apart from three
special cases, these are just the Abelian cyclic groups Zn (rotations over 2π

n ) and the
dihedral groups Dn (rotations over 2π

n and an equal number of reflections). The cyclic
groups and the dihedral groups for n odd were treated in [7], and in chapter 4 we look
at the cases with n even.

We first consider condensates in the electric and magnetic sectors, and then in the
dyonic sector. As the magnetic (topological) charges are categorized into conjugacy
classes, we face several options for defining a magnetic condensate, depending on the
state vector. There is one gauge-invariant option, the class sum. When considering
other states, there is a condition, which states that the condensate particles braid triv-
ially with themselves, that eliminates many linear combinations. However, several
others remain, of which we treat one case, a pure, single flux, in detail, and give an
example of another.
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For pure electric or pure magnetic particles, we find a general form to describe the
symmetry breaking.

In the dyonic sector, there are condensates that deviate from that description, and in
chapter 5 we work out such a case in a D(D4)-theory, in which the residual symmetry
algebra turns out to be twice as large as one would naively expect. Furthermore, as we
perform those calculations, it will become clear that there is a special basis of D(D4)
that has the structure of a group. This is explored in chapter 6.

Notation

• We often use the notation a ⇀ v for the action of a on a vector v, which respects
all the structure of the object to which a belongs. It is identical to the representa-
tion notation π(a)v, but the representation in question is left implicit in the form
of the representation space of which v is an element.

• The acronym gcd(m,n) is used to denote the greatest common divisor of the
integers m and n. E.g. gcd(12,8) = 4.

• Cyclic groups of order n are denoted by Zn, dihedral groups of order 2n by Dn.

• A group generated by an element g will be denoted by 〈g〉; for example if r
generates Zn with n even, then 〈r2〉 is a subgroup isomorphic to Zn/2.

• The imaginary element is denoted by ı, to avoid confusion with i as an index
label.

• Group and algebra representations will always be taken over the field of complex
numbers.



x Introduction



Chapter 1

2+1D discrete gauge theories

In this chapter we recall some features of a gauge theories in 2+1 dimensions, broken
down to a discrete subgroup. When topological interactions are present in such a sys-
tem, the topological charges, which are labelled by the elements of that subgroup, can
be transformed by interaction with each other and by gauge transformations. Accord-
ingly, these charges are organized into conjugacy classes, and carry a higher-dimensi-
onal internal state space.

Topological interactions lead to the description of braid statistics: the interchange
of two particles may introduce factors beyond just 1 (Bose–Einstein statistics) or −1
(Fermi–Dirac statistics).

The representations, denoting particles carrying both topological and fundamental
(gauge) charge, and also the braiding of these particles are described by the quantum
double construction of chapter 2.

We will briefly mention the properties of these discrete gauge theories, which were
developed in [52] and extended in [34, 6, 7].

1.1 Yang–Mills–Higgs gauge theory

Gauge symmetry The concept of gauge freedom arose in classical electrodynamics,
where the scalar and vector potentials have a degree of freedom: these potentials can
undergo gauge transformations which alter the potential but do not affect the phys-
ically measurable electric and magnetic fields. Such gauge transformations always
have the mathematical structure of a group, because two consecutive transformations
are equivalent to another single transformation.

A system that possesses gauge freedom is said to be gauge symmetric under a
certain gauge group, borrowing the terminology from other symmetry phenomena such
as Lorentz group spacetime symmetry or point group symmtery in crystals.

A symmetry group G acts on a state |φ〉 of the system via one of its representations.
The state is a vector in the base space of this representation. In other words, we classify
particles according to their transformation properties.

In most cases the representation will be completely reducible, so that it may be
written as a direct sum of irreducible representations of that group. The inequivalent
particles in that theory will be labelled by these irreducible representations, and we can
restrict our classification to finding out what the irreducible representations are.

1



2 Chapter 1. 2+1D discrete gauge theories

The last important concept is the commutativity of the gauge group. The afore-
mentioned gauge group of electrodynamics U(1) is Abelian, which means that the
order of two consecutive transformations has no influence on the resulting transforma-
tion. As a consequence all complex† irreducible representations are one-dimensional,
and the result of a gauge transformation will always be just a phase factor.

In contrast, a non-Abelian gauge group also has higher-dimensional irreducible
representations. A particle that is labelled by such a representation has a higher-di-
mensional internal state space, so that gauge transformations may alter the state of that
particle. We usually choose a convenient basis in the state space according to respective
inequivalent states. If the symmetry were an external symmetry, this basis would reflect
the eigenvectors of some measurement operation. But as gauge transformations (almost
by definition) do not affect the system, such considerations do not apply.

Theories with non-Abelian gauge bosons coupled to massive particle fields are gen-
erally called Yang–Mills theories.

Spontaneous symmetry breaking A theory is said to be spontaneously broken when
the Langrangian (or the action, or the Hamiltonian) of the theory is invariant under
all gauge transformations, but the groundstate of the system is not. In that case the
groundstate becomes degenerate, and nature has to ‘spontaneously choose’ in which
groundstate the system will manifest itself. Mostly, one encounters systems which are
already broken, and we say that these systems possess a hidden symmetry.

The gauge group is usually a Lie group, which is generated by a finite number of
generators. Goldstone’s theorem states that for each broken symmetry generator, there
will appear a massless particle, now called Goldstone bosons (see e.g. [19]). These
Goldstone bosons appear when a global symmetry is spontaneoulsy broken. Many
light particles, such as pions, can be interpreted as Goldstone bosons.

Next, look at local gauge symmetry. Now we have gauge fields, (vector) functions
on a spacetime manifold. These fields, such as the familiar electromagnetic A-field, are
in general massless. When the local symmetry is spontaneously broken, the Goldstone
bosons ‘conspire’ with the gauge fields, which results in the gauge bosons acquiring
mass. This phenomenon, which is sometimes referred to as the gauge fields ‘eating’ the
Goldstone boson, is called the Higgs mechanism. This will be important in our theories,
because now the interactions mediated by the massive vector bosons are short-ranged.

We refer to standard text books ([38, §20.1] or [12, §5.2]) for further details.

It is also possible to have a Higgs mechanism in theories with no apparent local
gauge symmetry. For instance, in smectic and hexatic liquid crystals, a gauge field may
be ‘dynamically generated’ and can cause some hydrodynamic modes, which are the
equivalents of Goldstone bosons, to become suppressed (massive) [31, §§3.2.2,3.3.1].

A common example is of a broken local gauge symmetry is superconductivity: the
electromagnetic gauge group U(1) is broken down to Z2 as two electrons are bound
together in momentum space to form a Cooper pair. The photon gauge field acquires
a mass, which is inversely proportional to its penetration depth. We observe this phe-
nomenon as magnetic fields are expelled from the superconductor, which is called the
Meissner effect.

†As mentioned in the introduction, we only concern ourselves with complex representations.



1.2. Discrete gauge theories 3

1.2 Discrete gauge theories
We will consider systems that are governed by a Yang–Mills–Higgs gauge theory with
matter fields that are covariantly coupled to the gauge fields.

The assumption is that the original continuous gauge group G will be spontaneously
broken down to a finite subgroup H by the Higgs field. The system assumes one of the,
now degenerate, groundstates, and the gauge fields become massive through the Higgs
mechanism.

Now, we are interested in the long-distance physics, or equivalently the low en-
ergy regime, of the system. In this regime, the Higgs field cannot be excited, so it is
condensed in one of its groundstates. We can speak of a Higgs medium, filled with
consensed Higgs particles.

The massive gauge bosons have a mean free path inversely proportional to their
mass, in other words: the field strength decays exponentially with the mass, so that the
interaction between two widely separated particles by the exchange of gauge bosons
is (exponentially) suppressed. It is explained in [52, §1.3.1] that for a electromagnetic
gauge field, this may be regarded as the Coulomb screening of the gauge field by the
Higgs medium.

We will see in the next section that when topological interactions are also present
in the theory, they are not screened, and lead to the special characteristics, in particular
braid statistics, of these discrete gauge theories.

Particles in the broken theory In gauge theories, the particle spectrum is determined
by the properties of particles under gauge transformations. The gauge group acts on
a Hilbert space via one of its representations. As mentioned earlier, the description
reduces to classifying the inequivalent particles by the irreducible representations of
the group. We now want to know what happens to such particles when the symmetry
is spontaneously broken.

One can readily see that a representation of a group is also a representation of
each of its subgroups, because a subgroup is closed under multiplication and a group
representation respects this multiplication. However, an irreducible representation of
the full group need no longer be irreducible under the action of the subgroup.

Because the subgroup is finite, all its representations are completely reducible. An
irreducible representation of the full group, which may be reducible under the action
of the subgroup, can therefore always be written as a direct sum of irreducible repre-
sentations of the subgroup. The decompositions of the restriction to H of irreducible
G-representations Πα into irreducible H-representations Ωβ are called branching rules.
These are similar to the familiar Clebsch–Gordan decomposition, and are determined
by coefficients Nβ

α :
Πα |H =

⊕

β
Nβ

α Ωβ . (1.1)

Naturally, the dimensions of the representations in the decomposition have to add up
to the dimension of Πα .

1.3 Topological interactions
Apart from the fundamental, gauge charges, there may be other possible excitations in
the system which are of a completely different nature. These excitations, called topo-
logical defects, can interact with each other or with fundamental charges in a way that
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is not described by explicit interaction terms in the action (Hamiltonian, Lagrangian)
governing the system. Rather, such interactions arise as a consequence of the geom-
etry (the multiply-connectedness to be specific) of the configuration space. For these
reasons, they are called topological interactions.

Many examples of topological defects in different physical theories can be found
in the introduction of [52], and references therein. Most of these have been observed
in experiments as well.

Terminology In analogy with electromagnetism, we will often refer to fundamen-
tal, gauge charges as “matter particles” carrying “electric charge”, and to topological
excitations as “vortices” carrying “magnetic flux” (topological charge). One can also
envisage particles carrying both fundamental and topological charge, and these will
be called dyons. An electric particle may then be regarded as a dyon carrying trivial
magnetix flux, and a magnetic particle as a dyon carrying trivial electric charge.

1.3.1 The Aharonov–Bohm effect
The most well-known example of topological interaction is the Aharonov–Bohm ef-
fect. Originally devised as a thought-experiment [1], it has now been verified by many
different experiments, see [37] for a detailed account, and [47] for the 1998 verification
of the so-called electric Aharonov–Bohm effect.

The Aharonov–Bohm effect, in its typical formulation, shows that a topological
defect, in this case a solenoid generating a magnetic vector potential, can influence
a fundamental charge, in this case an electron, even when the electron travels only
through regions where the electric and magnetic fields vanish. That is, the vector po-
tential, long thought to be just a convenient auxiliary quantity, has physical meaning
even when its curl, the magnetic field, is zero in the regions through which the electron
travels (when it is locally pure gauge).

This effect is purely quantum-mechanical, having no classical analogue. One im-
portant property of this interaction is that it can only be detected when the particle
interacting with the defect completely circumvents the defect. We will now discuss
how this works.

The magnetic Aharonov–Bohm effect Consider the double-slit experiment: elec-
trons are ‘fired’ one-at-a-time at a screen, but they first pass through an obstruction
with two parallel slits in it. When one of the slits is closed off, we will see a Gaussian
distribution of impacts on the screen, in the direction perpendicular to the slit on the
screen (figure 1.1(a)). When both slits are open, we will see an interference pattern,
confirming the wave-like nature of electrons (figure 1.1(b)).

Now we place a solenoid between the two slits, in such a way that the electron
beams only travel trough regions of space where the magnetic field generated by the
solenoid is zero, which can be accomplished by making the solenoid very long. What
we will observe is that the interference pattern is shifted relative to the situation without
a solenoid (figure 1.1(c)).

An explanation is that the wave functions of the two electron beams each undergo
a phase shift in such a way that the total phase shift is non-zero. This phase shift is due
to the non-zero vector potential. To be more precise, write the total wave function as a
superposition of the two beams:

ψtot(x) = ψupper(x)+ψlower(x). (1.2)
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(a) Electrons scatter when
sent through a small slit

(b) Single electrons show
interference

(c) The interference pat-
tern is shifted when a
solenoid generates a vector
potential

Figure 1.1: The magnetic Aharonov–Bohm effect

Each beam undergoes a phase shift eıφ(x) due to the vector potential A(x):

φ(x) =
e
~c

∫ x

C=0
A(x′)dx′, (1.3)

where C denotes the path around the solenoid, ending in point x. When the beams
recombine (interfere) there is a difference in phase shifts, which corresponds to a phase
shift of the total wave function obtained by traversing a closed loop around the solenoid.
But we know that

∮
Adx = Φ, with Φ the magnetic flux through the solenoid. The total

phase shift between the two beams is then given by

φtot =
e
~c

Φ. (1.4)

This phase shift is visible as the interference pattern on the screen is also shifted, unless
the phase shift is a multiple of 2π ~c

e , in which case we cannot discern the shift.
The important thing we learn from this is that the actual path the electron beams

take is of no importance: the only measurable quantity, the total phase shift, is solely
dependent on circumventing the solenoid—if we would be able to encircle the solenoid
twice, the phase shift would be twice as large. In other words, the solenoid constitutes
a defect, and the winding number is a discrete number describing the topological inter-
action.

1.3.2 Topological interactions in discrete gauge theories
It is known that certain theories with massive gauge fields allow magnetic vortices
carrying flux (see e.g. [52, §1.3.2]). We from this point on assume that such vortices
can arise in each discrete gauge theory we consider.

Classification of stable defects When vortices are present in discrete gauge theories,
they lead to interactions similar to the Aharonov–Bohm effect: because the gauge fields
are all massive, they are pure gauge at large distances from the defect. It can be argued
that these topological interactions are not suppressed by Coulomb screening due to the
condensed Higgs particles [52, §1.3.2]. We now show that the vortices are labelled by
elements of the residual symmetry group H.

We have seen in §1.3.1 that the quantity of importance is the exponential of the
contour integral of the gauge field. Now, assuming our (broken) gauge group G to
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be a Lie group, the gauge field A can be decomposed into generators Ta of the Lie
algebra corresponding to the gauge group. Because this group can be non-Abelian, we
must now take the path-ordered integral, denoted by the operator P. Now a particle
traversing a loop undergoes a holonomy:

w(C) = P exp(
∮

C
A) = P exp(

∮

C
dxi Aa

i Ta) = h ∈ H, (1.5)

where the identification with a group element is made using the Lie algebra–Lie group
correspondence, and the fact that it must take values in the unbroken group H, because
the holonomy has to leave the groundstate invariant.

Order parameter Let’s discuss this a little more explicitly. The most convenient way
to describe defects is by introducing an order parameter, some vector valued function
on every point in space. This order parameter usually varies continuously through
the medium, but discontinuities can occur at some points, lines or surfaces, and these
discontinuities constitute the defects.

As an example, think of spins, dipoles, in a three-dimensional medium. The order
parameter can be represented by evenly-sized arrows pointing in a certain direction. In
an unordered system, the arrows point in random directions. In a uniform medium, all
spins are aligned, and the order parameter is constant. One can think of other cases, for
example a point around which all arrows point outward, as if it were a source. This is
an example of a point defect.

It can be shown (e.g. [52, §1.4.1]) that for discrete gauge theories, the order pa-
rameter space of a continuous symmetry G broken down to a finite subgroup H is
isomorphic to the coset space G/H.

What we need is a way to detect discontinuities in the order parameter, and a way
to describe whether two defects are equivalent. This is done using homotopy theory.

The fundamental group classifies defects Because the order parameter is a contin-
uous function everywhere in space except on points where there is a defect, a loop
in space around a defect corresponds to a continuous path in order parameter space.
A continuous deformation of the loop in real space will correspond to an continuous
deformation of the path in order parameter space. Recall that we are still working in
two-dimensional space, so that a loop around a defect cannot be continuously con-
tracted to a point.

We say that two loops that can be continuously deformed into each other are ho-
motopically equivalent. Because the order parameter is discontinuous at points where
there is a defect, a loop that circumvents a defect can never be deformed into one that
does not. This is the essence of the defect classification.

So the problem of classifying different vortices in a discrete gauge theory reduces to
the question: when can two loops in G/H be continuously deformed into each other?
It can be shown that G/H is broken up into disconnected components, which each
contain precisely one element of H. Inequivalent loops correspond to paths that begin
on different disconnected components (see e.g. [33, §V]). Therefore the defects are
classified by elements of H.

The mathematical formulation is that the fundamental group π1, or first homotopy
group, of the order parameter space G/H is isomorphic to H. The fundamental group
classifies all non-equivalent loops in a space and can be shown to indeed possess a
group structure by composition of loops. We will use the fundamental group again in
§1.4.
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Figure 1.2: Flux metamorphosis Two fluxes labelled by h1 and h2 (a) fuse into a flux h1h2 (b).
This fusion product, which corresponds to the long-range properties of the two-particle state, should not
change under a local interchange (c). When we choose the flux h′1 to still have h1 for its flux value after
the interchange, the other flux must then be h′2 = h1h2h−1

1 (d), so that the fusion product remains h1h2. The
Dirac strings are denoted by black vertical lines; we can say that h2 undergoes flux metamorphosis when
passing through the Dirac string of h1.

1.3.3 Flux metamorphosis
Consider a global symmetry transformation g ∈ H on a defect. This transformation
leaves the groundstate invariant, and is therefore a true symmetry of the system. The
gauge field transforms as

A(x) 7→ gA(x)g−1, (1.6)

and we see immediately that (1.5) changes accordingly:

w(C) 7→ gw(C)g−1. (1.7)

So we now see that a global symmetry transformation, which may have no effect on
any measurable properties, will send a defect to an element in its conjugacy class. This
leads us to the notion that topological charge must in fact be labelled by conjugacy
classes, not elements, of a group.

It was shown in [4] that another phenomenon, dubbed flux metamorphosis, also
causes the defects to be organized into conjugacy classes of H instead of single ele-
ments: take two vortices with fluxes h1 (the left vortex) and h2 (the right vortex). The
long-range interactions of this two-particle system are dependent on the holonomy cir-
cumventing both fluxes, which is equal to the group product h1h2 as shown in figure
1.2(a)-(b). Now a local interchange of the fluxes can never affect the long-distance
properties of the flux-couple. We can choose the flux of the vortex h1 on the left to
remain fixed, so that the other vortex must now have flux h1h2h−1

1 in order to leave the
product h1h2 unchanged. This is also denoted pictorially in figure 1.2(c)-(d).

Dirac string So the interchange of two fluxes leads to transformation of one of them,
which we can also call a topological interaction. It is convenient to make the following
choice: we have seen that a particle or flux circumventing a non-trival vortex undergoes
some transformation. We can perform local symmetry transformations so that all of this
non-trivial action is located in a narrow wedge, which is called the Dirac string. This
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enables us to say that a particle or flux is transformed when it passes through the Dirac
string of the vortex. This choice makes it easier to consider many-particle systems,
when the vortices are described using their Dirac strings.

The Dirac string is pictured as a black line in figure 1.2.

1.3.4 Quantization
So far, we have talked about charges and vortices as classical particles, and both global
symmetry transformations and local interchanges of fluxes should leave the total flux
of the configuration invariant. We now want to turn this into a quantized description,
by representing the fluxes and charges as vectors in a Hilbert space, on which we can
perform symmetry transformations and other operations.

A fundamental particle is a representation Γ of the gauge group, which for discrete
gauge theories is the residual symmetry group H. The particle is in a state |v〉 in the
representation space VΓ, and symmetry transformations act through the representation:

g ⇀ |v〉 = Γ(g)|v〉. (1.8)

As we have seen in the previous section, a vortex should be labelled by the con-
jugacy class A of the gauge group H, and it has an internal structure labelled by the
elements of A. This internal structure is of physical importance. For instance, a flux h1
may annihilate its anti-flux h−1

1 . However, when we first take h1 around another flux
h2, it takes the value h2h1h−1

2 , which only equals h1 when h1 and h2 commute.
One can also envision a double slit interference experiment, where a vortex with

flux h2 is placed behind and between the slits. We send fluxes h1 through the slits. The
vortex between the slits is transformed into h1h2h−1

1 , and the projectile particle hits the
screen carrying flux h1h2h1h−1

2 h−1
1 . Therefore we do not observe interference unless

h1 and h2 commute. This is discussed in more detail in [27, §II-IV].
So a vortex is in a state in the representation space VA, the basis of which is labelled

by the elements of A, and on which there is an inner product

〈h|h′〉 = δh,h′ . (1.9)

This basis and inner product have the same structure are the canonical basis and mul-
tiplication of the algebra of functions from A to C. We will return to this in the next
chapter. For now, it will suffice to say that a global symmetry transformation g ∈ H
acts on a basis vector |h〉 by conjugation:

g ⇀ |h〉 = |ghg−1〉. (1.10)

Topological interactions The next thing we want to describe are the topological in-
teractions, in terms of operations on states |h〉 and |v〉. What we will use is the opera-
tor R, called the braid operator, which interchanges two particles counter-clockwise.
The action of taking the particle on the right around the particle on the left counter-
clockwise is then denoted by R2, and this is called the monodromy operator.

Let’s first look at taking a charge around a flux. When the charge circumvents the
flux, it passes through its Dirac string once, which leads to a transformation relative to
the flux:

R
2|h〉|v〉 = |h〉

(
Γ(h)|v〉

)
. (1.11)

Now, take a look at two fluxes. By interchanging once, the flux on the right gets
conjugated by the flux on the left. By interchanging once again, the fluxes return to
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their original position, where the conjugated flux now acts on the flux that moves to the
left:

R|h1〉|h2〉 = |h1h2h−1
1 〉|h1〉, (1.12)

R
2|h1〉|h2〉 = |h1h2h1h−1

2 h−1
1 〉|h1h2h−1

1 〉. (1.13)

This reproduces what we found above.

Centralizer representation Interference experiments can be used to determine flux
|h〉 of a particle, as an incoming charge in state |v〉 of the representation Γ gets trans-
formed by the representation value of the flux through (1.11) and we get interference
amplitudes

〈v|〈h|R2|h〉|v〉 = 〈h|h〉〈v|Γ(h)v〉 = 〈v|Γ(h)v〉. (1.14)

By repeating this experiment for a complete set of states |vi〉, we find all matrix ele-
ments of Γ(h); if Γ is a faithful† irreducible representation of the residual symmetry
group H, we can determine the element h itself.

We may also place an unknown charge Γ between the slits, and perform the exper-
iments with all fluxes h ∈ H, by which we can determine the irreducible representation
Γ.

However, if the unknown charged particle also carries flux, because of flux meta-
morphosis we will only be able to determine the charge by incoming fluxes that com-
mute with the flux of the charged particle; otherwise no interference is observed. The
charge will no longer be a representation of the full residual symmetry group, but of
the centralizer subgroup Nh, consisting of all elements of H that commute with the flux
h of the charged particle.

This can already be seen without even referring to any experiment, but by trying
to perform a global symmetry transformation (1.7). The transformations that commute
with the flux of the particle can still act on the charge part in the tensor product rep-
resenting the state of the particle. This still forms an internal degree of freedom: the
representation space is that of a representation of the centralizer Nh of the flux.

All of this will become much clearer by applying the mathematical framework to
be developed in chapter 2, but do remember that there is a physical reasoning behind it.
For an exploration of subtleties arising in measurement experiments of these discrete
gauge theories, see [35].

1.4 Braid statistics
We can extend the description of interchanging particles to a system with any number
n of particles. Because of topological interactions, we may, apart from ordinary (Bose–
Einstein or Fermi–Dirac) statistics corresponding to the (ordinary) spin of the particles,
have to deal with braid statistics. In particular, an n-particle configuration no longer
gives rise to a representation of the permutation group Sn, but rather of the braid group
Bn. We will now discuss this.

Quantization and configuration space For a system of n indistinguishable (identi-
cal) particles moving on a manifold M, the classical configuration space Cn is given

†A representation ρ is faithful if ρ(h1) = ρ(h2) ⇒ h1 = h2 ∀h1,h2 ∈ H.
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Figure 1.3: Braid group generators

by
Cn(M) = (Mn −D)/Sn. (1.15)

Here Mn −D represents all possible particle positions minus all configurations where
two or more particles coincide. Furthermore all permutations of particles are divided
out because they are indistinguishable. This configuration space is in general multiply-
connected.

If we now quantize the system, all configurations become states in the represen-
tation space of an irreducible representation of the fundamental group of the configu-
ration space π1

(
Cn(M)

)
. It can be shown that for manifolds of dimension larger than

two
π1

(
Cn(M)

)
= π1

(
(Mn −D)/Sn

)
' Sn dim M > 2. (1.16)

There are two one-dimensional representations of Sn: the trivial, completely symmet-
ric representation, correpsonding to Bose–Einstein statistics, and the completely anti-
symmetric representation, corresponding to Fermi–Dirac statistics.

Braid groups Now we turn to 2+1 dimensions. We consider our particles to move in
a flat plane R

2. It may be calculated that

π1

(
Cn(R

2)
)

= π1

(
(R2n −D)/Sn

)
' Bn. (1.17)

Here Bn is the braid group defined by n− 1 generators τi and the relations (see figure
1.3(a))

τiτi+1τi = τi+1τiτi+1 (1.18)

τiτ j = τ jτi |i− j| ≥ 2. (1.19)

When we label the n particles with index (i), the action of generator τi on the n-particle
state is that of locally interchanging particles (i) and (i + 1) counter-clockwise, so
corresponding to the operation R on those two particles, while leaving the others un-
changed.

The nth permutation group Sn is actually defined by the same generators and rela-
tions plus an additional relation τ2

i = 1. This relation assures that interchanging two
particles twice will bring back the original configuration. For the braid group this is not
the case: the particles ‘wind around’ one another, leading to a different configuration;
if the system contains topological interactions as in §1.3.4, this winding around is not
trivial (figure 1.4), and is therefore not equivalent to the identity. In principle we could
go on and on applying τi, each time obtaining inequivalent configurations. For this
reason, the braid group is infinite.
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So an n-particle configuration in a discrete gauge theory with residual symmetry
group H will be a state in the representation space of some irreducible representation
of the direct product of H and the braid group Bn. The abstract generators τi of Bn are
represented by the braid operators Ri, which physically interchange particles (i) and
(i+1).

Yang–Baxter equation Let R as before denote the process of braiding two adjacent
particles, so

Ri = 1⊗·· ·⊗1
︸ ︷︷ ︸

i−1 times

⊗R⊗1⊗·· ·⊗1
︸ ︷︷ ︸

n−i−1 times

. (1.20)

Because the Ri represent the τi they obey the relation (1.18), which leads to

(1⊗R)(R⊗1)(1⊗R) = (R⊗1)(1⊗R)(R⊗1). (1.21)

This equation identifies operations on three-particle states, and is known as the Yang–
Baxter equation (A.15). The braid operator R is in this context called an R-matrix.
Figure 1.4 represents the Yang–Baxter equation on the group generator level.

PSfrag replacements

=

Figure 1.4: The Yang–Baxter equation (1.18)

It is precisely this relation that causes many special properties of 2+1-dimensional
physics. It is also a main reason to turn to the quantum double construction of chapter
2, as this structure automatically provides R-matrices for every representation space of
its representations.

Truncated and coloured braid groups Recall that the effect of a monodromy in a
system is determined by the kind of topological interactions it features. In the systems
discussed in §1.3, these interactions were dependent on the residual symmetry group
H. Because this group is finite, the repeated action of interchanging two particles in
a certain state will eventually produce the same state†. In other words, for any two
particles there exists some integer m for which Rm = 1.

When a configuration of n indistinguishable particles is in a state of a representation
of Bn that obeys this equation, it corresponds effectively to introducing an extra relation
to the braid group:

τm
i = 1 ∀i. (1.22)

The group thus obtained is called the truncated braid group B(n,m).
†The argument is as follows: by winding the particles around each other, their fluxes may change through

conjugation, and their charges are transformed by the representation value of fluxes. The values obtained
through the conjugation and representation are dependent on the group action. Because the group is finite,
we will inevitably come upon a state identical to a previous one after a finite number of monodromies. This
can then be generalized to any state. The number of monodromies required will depend on the particular
representations of the particles.
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Next, we can consider distinguishable particles, or particles “carrying a different
colour”. This has nothing to do with colour charge of quantum chromodynamics, but
just means that we can distinguish particles because of some property (mass, charge
etc.). In this case, the interchange of two particles of different colour does not lead
to an identical configuration, and we can only consider those operations where the
particles are carried back to their original position. In this case we can no longer speak
of a braid operation R, but monodromies R2 do still exist. The group describing these
operations is called the coloured braid group P(n), or P(n,m) if it is also truncated.

When a system contains multiple particles of each colour, we are left with the
subgroup of the truncated braid group consisting of all operations for which the final
position of a particle is the initial position of a particle of the same colour.

Braid statistics We have seen that statistics of a discrete gauge theory with topolog-
ical interactions depend upon the particular form of the braid matrix R, which in turn
depends upon the nature of the topological interactions.

If the topological interactions are Abelian, the action of R will also be Abelian,
being a one-dimensional representation of the braid group; interchanging two identical
particles will give additional phase factors. This is called Abelian braid statistics, and
the particles transforming in this way have been named anyons by Wilczek because
their interchange can give any phase [50], not just 0 or π like bosons and fermions.
This also leads to a generalized notion of spin, discussed further in §2.5.

Claims have been made very recently that anyons have been measured directly in a
fractional quantum Hall system [10].

The other interesting case arises when the topological interactions are non-Abelian,
leading to higher-dimensional irreducible representations of the braid group. Then
the interchange of two particles will give a matrix-valued phase factor, and two inter-
changes may not commute. We call this non-Abelian braid statistics, and it opens up
possibilities for many interesting physical models.

In the next chapter, we will argue that the best way to treat non-Abelian statistics
is the ribbon Hopf algebra formalism, the structure of which comprises all physical
properties of these systems.



Chapter 2

Quantum double symmetry

The conventional description of symmetry in physics makes extensive use of the math-
ematical structure of groups. Symmetry transformations are given by group elements
acting on physical states denoted as vectors in a Hilbert space via the group representa-
tions. Particles are labelled by these representations, as they contain the characteristics
under transformations.

As we will show, the proper way to describe the symmetry in a theory featuring
interactions of both fundamental charges and topological defects is to extend the resid-
ual gauge group to its so-called quantum double. The quantum double is an example
of a mathematical construction called ribbon algebra, a particular form of a Hopf al-
gebra, which has a lot of structure, mathematically speaking. The beauty is now, that
every single piece of this structure corresponds directly to some physical property in
the theory we discussed in chapter 1.

Because of this correspondence, we will build up both the mathematical structure
and the physical concepts side-by-side, each time introducing a physical property and
its structure in mathematics. Another motivation for this approach is that in [52, 34]
the theory is developed from a physical point of view, whereas in [7] the mathematics
were presented first, followed by the relation to the physics. We therefore employ a
third method to present the formalism.

For several mathematical constructions, references are given to the definitions in
appendix A.1.

2.1 The structure of flux–charge composites
In the previous chapter we have seen that in discrete gauge theories in 2+1 dimensions,
the excitations (particles) can carry two types of charge: fundamental and topological.
As always, we want to describe these excitations by their properties under symmetry
transformations, which act on the excitations through representations. In this section
we will discuss how we can implement these ideas for particles carrying both flux and
charge, following the argument in [52, §2.1].

2.1.1 Identifying the state of a flux–charge composite
Given a particle with unknown flux and charge, we can perform global symmetry trans-
formations (1.8) and (1.10). These transformations are elements of the group H.

13
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Independently we can also perform interference experiments using charges, which
result in monodromies of the form (1.11) and (1.13). Through a series of interference
experiments, we may establish the flux of the unidentified particle, so these combined
operations can be described as projecting out a certain flux h, which we denote by
the projector Ph. As mentioned in (1.9), flux projections are orthogonal, so for two
consecutive projections Ph and Ph′ we have:

Ph ◦Ph′ = δh,h′Ph. (2.1)

This relation is not compatible with a group structure—in particular the zero element
cannot exist in any multiplicative group—so we cannot speak of a symmetry group any
longer. But we can describe the particles in this system as representations of a structure
called an associative algebra.

Algebras An assoctiative algebra (see p.102) is a vector space with an associative
multiplication. When there is a unit element for this multiplication, which we will
always assume, we speak of a unital algebra. The multiplication and the unit of an
algebra A can also be defined in terms of maps µ : A ⊗ A → A, a ⊗ b 7→ ab and
η : C → A, λ 7→ λ1 (see p.102). We will use these to clarify the structure of Hopf
algebras in §2.2.4.

The algebra of flux projections and symmetry transformations A flux projection
Ph can be seen as a function Ph : H → C, defined by Ph(h

′) = δh,h′ . In fact the set of all
flux projections form the canonical basis of the vector space of functions on a group
F(H). When we define multiplication of elements of this space by composition (2.1),
we obtain an algebra with unit ∑h∈H Ph. The multiplication for general functions can
also be written ( f · f ′)(h) = f (h) f ′(h), and is called pointwise multiplication.

Note that the group multiplication structure in H does not play any role here; we
could have taken any set of |H| elements just as well. It will become important later
on, as we will see in §2.2.1.

The group of symmetry transformations H can be naturally extended to an algebra
called the group algebra CH, by taking each group element as a basis vector, and
defining the multiplication of these basis vectors by the group multiplication. This
algebra is also |H|-dimensional.

We will now classify the particles in our theory by their properties under a global
symmetry transformation g ∈ CH, followed by a flux projection Ph ∈ F(H). Because
these operations are independent, any combination of g and Ph is possible, and this is
denoted by the tensor product (Ph⊗g) ∈ F(H)⊗CH. From now on we will write such
an element as (Ph,g).

Twisted multiplication Now the tensor product is a way to create a new vector space
out of two others. This can be carried over to algebras by defining the multiplication
of the new algebra as

(a⊗b) · (a′⊗b′) = (aa′⊗bb′). (2.2)

However, from (1.10) we know that a global symmetry transformation does affect a
flux. In other words, the outcome of a flux projection Ph will be different whether
performed before or after the symmetry transformation. In fact, we demand

g◦Ph = Pghg−1 ◦g. (2.3)
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So we define our algebra, denoted by F(H) ⊗̃ CH as in [7], by the basis vectors
(Ph,g)h,g∈H and the ‘twisted’ multiplication

(Ph,g) · (Ph′ ,g
′) = δh,ghg−1(Ph,gg′). (2.4)

From now on we will often suppress the · notation for multiplication.
It is precisely this twisting that accounts for the peculiar properties of the quantum

double construction we are now building up. The other (Hopf algebra) structure is
actually the same as it would be for a regular tensor product. In anticipation of this,
from now on we will denote this algebra by D(H), the quantum double of H (p.105).

2.1.2 Representations

Now we wish to talk about particles as states in a Hilbert space of a representation of
this algebra D(H), similar to what is done for ordinary symmetry groups. Mathemati-
cally, a representation is a family of linear maps that can be associated (homomorphi-
cally, see p.102) to every element of a certain structure, which has to respect all rules
for combining elements. Mathematicians prefer to use to word module (p.103).

Algebra representations For groups, the only rule that we have to respect is multi-
plication: then the inverse and unit will be carried over as well. For algebras we demand
that the multiplication is conserved, and that the representation is linear, which is a dif-
ferent way of saying that addition and scalar multiplication must also be conserved.
Denoting a representation of an algebra A by Π, we demand that, ∀ a,b ∈ A,

Π(ab) = Π(a)Π(b), (2.5)
Π(λaa+λbb) = λaΠ(a)+λbΠ(b). (2.6)

Just as for a group, an algebra can have irreducible representations, which are called
simple modules. An algebra is called semisimple if every module can be written as a
direct sum of simple modules. This is similar to the statement that every representa-
tion of a group is completely reducible, which holds for instance for all finite groups.
In particular, if an algebra is semisimple, we need only concern ourselves with the
irreducible representations, as these will generate all representations.

Representations of CH and F(H) First, we state that the algebras CH and F(H) are
semisimple†. Therefore, we wish to find all their irreducible representations.

The irreducible representations of the group algebra CH are given by the linear
extension of the irreducible representations of the group H itself, see e.g. [43, §6.1].
We stress that these can be higher-dimensional.

The irreducible representations of the function algebra F(H) are all one-dimen-
sional, because it is an Abelian algebra. They are given by Eg g ∈ H, with action
Eg(Ph) = Ph(g) = δh,g.

†The semisimplicity of the group algebra follows from the correspondence from its irreducible repre-
sentions with those of the group H. The function algebra is also semisimple, because it is the dual of the
group algebra, which is cosemisimple.
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2.1.3 Representations of D(H)

Because of the twisted multiplication we saw in the previous section, the representa-
tions of D(H) are not just given by the tensor product of the irreducible representations
of F(H) and CH.

Instead of diving into mathematical technicalities, let us turn to our physical models
to see if we can predict the form of the irreducible representations, which, as we know,
represent the inequivalent particles which can be found in such systems.

Indications from physics Firstly, we know from §1.3.3 that the fluxes are organized
in conjugacy classes. That is, globally we cannot distinguish between fluxes h and
ghg−1 ∀ g ∈ H. Global symmetry transformations (1,g) should act on the internal
space by conjugating the flux. This internal space is therefore spanned by the elements
in the conjugation class of the flux h of the particle.

Next, we know that the symmetry transformations commuting with the flux h, the
centralizer Nh, can still act on the ‘charge part’ of the particle. More precisely, we
can categorize our group elements in cosets H/Nh labelled by [k]. In other words we
can separate each group element in a representative of the coset and an element of the
centralizer:

g ∈ H = kgng for some ng ∈ Nh and kg the coset representative of [g]. (2.7)

Now kg will conjugate the flux, and ng will transform the charge-state, according to a
representation of Nh.

The flux measurements Ph project out the flux h, and do not perform any action
on a charge. It will only signal whether it faces the specific flux h. If we are only
interested in the ‘global description’ of the flux, we should measure with ∑h′∈Ah

Ph′ ,
where the sum runs over the conjugacy class of h; we can then be sure to measure this
flux, regardless of what internal state it will be in.

Irreducible D(H)-representations The irreducible representations of D(H) were
described in [15]. We state the results.

The irreducible representations of the quantum double D(H) of a finite group H
are labelled by a conjugacy class A = {a1, . . . ,am} and an irreducible representation†

α of the centralizer Na of a distinguished element a of this class. We denote this
representation by ΠA

α . The representation space V A
α is the tensor product of the space

spanned by elements of the conjugacy class and the representation space of α:

V A
α = {|ai,v j〉} i = 1, . . . , |A|; j = 1, . . . ,dimα. (2.8)

Recall that the Na-coset representatives ki correspond to the elements of the conjugacy
class [a] by

ai = kiak−1
i . (2.9)

Defining ax = gaig
−1 ⇒ kxak−1

x = gkiak−1
i g−1, the action of an element (Ph,g) on the

state {|ai,v j〉} is now given by

ΠA
α(Ph,g){|ai,v j〉} = ΠA

α(Ph,e){|gaig
−1,α(k−1

x gki)v j〉}

= δh,gaig
−1{|gaig

−1,α(k−1
x gki)v j〉}. (2.10)

†For finite groups, every representation is equivalent to a unitary representation, and we shall always
choose them to bee so. See e.g. [28, §III.1].
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We see that indeed the flux ai gets conjugated by the global symmetry transforma-
tion g and subsequently projected out by Ph. Some freedom to act on the charge-part
may be left, although this must be calculated as in the formula given, because the part
of g that commutes with ai will be different from the part that commutes with a: the
centralizer Na of a need not be identical to the centralizer of ai, although they are
isomorphic (lemma A.7).

These representations can be shown to be orthogonal in the sense that their charac-
ters are orthogonal with respect to the canonical inner product. Using this property and
the fact that D(H) is semisimple†, we have found all irreducible representations, and
the following holds:

∑
A,α

(dim ΠA
α)2 = ∑

A,α
(|A|dim α)2 = dim D(H). (2.11)

Particle sectors Through the representations (2.10) we have classified all possible
particles that may exist in our system. We can identify four sectors: the vacuum,
charges, fluxes and dyons, as mentioned in §1.3.

The vacuum is represented by the representation Πe
1, corresponding to the trivial

conjugacy class, carrying the trivial flux, and the trivial H-representation. This repre-
sentation is one-dimensional and sends every transformation by basis vectors (Ph,g) to
1.

The charges are the representations Πe
α , corresponding to the trivial conjugacy

class, carrying the trivial flux. All symmetry transformations commute with this flux,
and the representations α are irreducible representations of the full group H. These
particles behave as regular particles transforming under H.

The fluxes are the representations ΠA
1 . They carry flux, but have no further internal

state that may transform under residual symmetry transformation commuting with the
flux. These particles behave as regular fluxes and show flux metamorphosis.

The most interesting particles are the dyons, made up by all other representations
ΠA

α A 6= [e]; α 6= 1. They transform states according to (2.10). If the group H is
Abelian, all conjugacy classes consist of one element, and all irreducible represen-
tations are one-dimensional. Then the ΠA

α are also one-dimensional and represent
anyons. If H is non-Abelian the representations may be higher-dimensional.

Electric–magnetic duality As the charges are related to the symmetry transforma-
tions of CH, we call the group algebra the ‘electric part’ of D(H). The fluxes are
similarly related to the function algebra F(H), which is therefore called the ‘magnetic
part’ of D(H). In fact, the magnetic part is dual to the electric part, as the space F(H)
is isomorphic to the dual vector space CH∗ of functions on CH.

With the quantum double construction, we are able to treat the electric and magnetic
parts on equal footing. The fundamental particles and the topological defects are both
represented by irreducible representations of D(H). Moreover, we are provided with a
description of all possible dyons using the same formalism.

†In [15], D(H) was shown to be semisimple because it is “a based ring in the sense of Lusztig”. Although
valid, this seems as bringing in some unwanted external theory. Alternatively, in [40, prop.7] it was shown
that D(H) is semisimple if CH and CH∗ ' F(H) are semisimple. Another approach is calculating that the
sum of the squares of the dimensions of the irreducible representation equals the dimension of the algebra,
which implies semisimplicity. I thank Vincent van der Noort for pointing this out; his proof can be found in
[46, cor.1.44].
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2.2 Multiparticle states – Coalgebra
Now that we know what particles may exist in our systems, we want to explore multi-
particle configurations. We may ask ourselves is: “what happens when we perform a
global symmetry transformation followed by a projection onto a flux, so (Ph,g), on a
two-particle state?” But first, we have to consider what this means.

What is fusion? For flux metamorphosis (§1.3.3), we have regarded interactions be-
tween two fluxes in a sense as local processes, which have no effect on the global
properties of the two-particle system. We can generalize this to any two-particle state:
by the fusion of two particles ΠA

α and ΠB
β , we mean the process of measuring the long-

range properties of the two-particles near each other, which we henceforth consider as
a single localized particle-like object.

Mathematically, we denote this by the tensor product ΠA
α ⊗ΠB

β . The coproduct,
developed in this section, will allow us to split the multi-particle Hilbert space in this
way into factors corresponding to irreducible reprsentations of the quantum double. In
general, ΠA

α ⊗ΠB
β will be different from ΠB

β ⊗ΠA
α , due to flux metamorphosis. We’ll

elaborate on this later on.
We can now also regard dyons as the fusion product of a flux and a charge, but this

will make no difference in our formalism.

2.2.1 Transformation on composites – Comultiplication
Symmetry transformations of composites Now that we have defined our composite
by ΠA

α ⊗ΠB
β , we want to perform a global symmetry transformation followed by a flux

projection on it by (Ph,g). The global symmetry transformations form a group H,
and the natural tensor product for group algebras is g⊗ g. We see that this correctly
corresponds to the physical situation as such a transformations works on both particles
independently.

Flux measurements on composites If we try to measure the flux of the composite
state by interference experiments, we will measure the total flux, given by the product
of the fluxes of the constituents. In other words, the process of traversing a loop around
the two fluxes counter-clockwise is equivalent to traversing first a loop around the
particle on the right followed by traversing a loop around the particle on the left, so
h = h′h′′ (see figure 1.2 on page 7).

The process of projecting out the flux h is in this setting equivalent to projecting
out all combinations of h′ and h′′ of which the group product gives h. That is

Ph ' ∑
h′,h′′

h′h′′=h

Ph′ ⊗Ph′′ . (2.12)

At this point, the group multiplication of H does play a role in the structure of F(H)
(cf. §2.1.1). It follows that the process of performing a global symmetry transformation
g and then projecting out a flux Ph on a two-particle system is given by

∑
h′,h′′

h′h′′=h

(Ph′ ,g)⊗ (Ph′′ ,g). (2.13)
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Comultiplication The mathematical language to describe these processes is to say
that our space D(H) is equipped with a comultiplication or coproduct ∆ : D(H) →
D(H)⊗D(H). This comultiplication generates the correct tensor product expressions
for probing composite states, by (ΠA

α ⊗ΠB
β )◦∆:

(ΠA
α ⊗ΠB

β )(Ph,g) := (ΠA
α ⊗ΠB

β )∆(Ph,g) = ∑
h′,h′′

h′h′′=h

ΠA
α(Ph′ ,g)⊗ΠB

β (Ph′′ ,g). (2.14)

Please note that this is the ‘regular’ comultiplication of the tensor product F(H)⊗CH;
there is no twisting of tensorands as there is in the product (2.4).

Coassociativity and cocommutativity A nice feature of the comultiplication is that
it is coassociative

(∆⊗ id)◦∆ = (id⊗∆)◦∆, (2.15)

which assures that composites of more than two particles are uniquely defined. That is,
the representation spaces (V A

α ⊗V B
β )⊗VC

γ and V A
α ⊗ (V B

β ⊗VC
γ ) can be identified.

The (mathematical) operation of switching the two tensorands in a tensor product
expression is called the flip: τ : a⊗ b 7→ b⊗ a. The comultiplication is called cocom-
mutative (p. 104) if it is identical to the operation of the comultiplication followed by
the flip, that is ∆ = (τ ◦∆) ≡ ∆op. The comultiplication in D(H) is not cocommutative
if H is not Abelian.

2.2.2 Vacuum – Counit
The comultiplication provides us with a formalism to describe fusion. In §2.1.3, we
mentioned that there is a vacuum sector, consisting of particles Πe

1 which cannot actu-
ally be measured. In particular, we want non-trivial excitations, particles, to behave in
the same way before and after fusion with a vacuum particle. That is, we demand

Πe
1 ⊗ΠA

α ' ΠA
α ' ΠA

α ⊗Πe
1. (2.16)

A function ε : D(H) → C with the property (ε ⊗ id)∆ = id = (id⊗ ε)∆ is called the
counit for the comultiplication ∆. We see that the counit is precisely the vacuum rep-
resentation. Together, the comultiplication and the counit equip a vector space with a
coalgebra structure (p.103).

2.2.3 Fusion rules – Tensor product decomposition
We have seen how the properties of a two-particle composite state can be described
using the coproduct on the tensor product of states. In fact, when probing only the
long-range properties, we cannot distinguish between a composite state and a point
particle. We may regard the two particles to have ‘fused’ into another single particle-
like object.

Starting out with the particles ΠA
α and ΠB

β , we are actually able to calculate into
which particles a composite of these two may fuse. The possible outcomes are called
the fusion rules, given by the tensor product decomposition, which is reminiscent of
the Clebsch–Gordan decomposition for group representations:

ΠA
α ⊗ΠB

β =
⊕

NABγ
αβC

ΠC
γ , (2.17)



20 Chapter 2. Quantum double symmetry

(co)multiplication µ : D(H)⊗D(H) → D(H) ∆ : D(H) → D(H)⊗D(H)
(co)unit η : C → D(H) ε : D(H) → C

(co)unitality µ(η ⊗ id) = id = µ(id⊗η) (ε ⊗ id)∆ = id = (id⊗ ε)∆
(co)associativity µ(µ ⊗ id) = µ(id⊗µ) (∆⊗ id)∆ = (id⊗∆)∆
(co)commutativity µ = µ ◦ τ ∆ = τ ◦∆

Table 2.1: Duality of algebra and coalgebra structures

where NABγ
αβC

gives the mulitplicity† of the irreducible representation ΠC
γ found in this

decomposition.
Using this formula, we can determine what the so-called fusion channels of bring-

ing two particles together may be. Reversely, this gives the possible decay channels of
a particle which we may consider as a composite. In the end, they are determined by
(ΠA

α ⊗ΠB
β )◦∆.

Please keep in mind that we do not give a treatment of the dynamics of any system
at all. When considering a particular theory these must come from other considerations,
for instance the action of the system in question. Nevertheless, we are already able to
determine the fusion and decay channels from the representation theory.

2.2.4 Algebra–coalgebra duality
We should inform the reader here that each concept of the coalgebra is dual to a concept
of an algebra. This is listed in table 2.1.

One can check that the algebra and coalgebra structure of D(H) are compatible in
the sense that

∆
(
(Ph,g)(Ph′ ,g

′)
)

= ∆(Ph,g)∆(Ph′ ,g
′), (2.18)

ε
(
(Ph,g)(Ph′ ,g

′)
)

= ε(Ph,g)ε(Ph′ ,g
′). (2.19)

Because of this compatibility, such a construction is called a bialgebra (p.104).

Dual bialgebras One particularly appealing property of (finite-dimensional) bialge-
bras is that it allows one to put a corresponding bialgebra structure on its dual vector
space. Here, the dual multiplication is dependent on the comultiplication and vice
versa, in the following manner ( f , f ′ ∈ D(H)∗):

µ∗( f , f ′) = ( f ⊗ f ′)◦∆, (2.20)
∆∗( f ) = f ◦µ . (2.21)

The quantum double and its dual seem to have more connections, and we will use some
of these in chapter 3.

2.3 Braiding – Universal R-matrix
We know from §§1.3-1.4 that our particles do not interchange commutatively. That is,
the interchange of a state ΠA

α ⊗ΠB
β is not given by just τ ◦ (ΠA

α ⊗ΠB
β ). Instead, our

particles obey braid statistics due to topological interactions.
†These multiplicities can be expressed in terms of so-called modular S-matrices. This was developed by

Verlinde [48], see also [15] and [52, §2.3].
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The braid operator From what we have discussed before, we know how an inter-
change will affect the particles in question: one particle will pass through the Dirac
string of the other, and undergoes a symmetry transformation dependent on the partic-
ular value of the flux carried by that particle.

So our braid operator R must signal the flux of the first particle, perform a trans-
formation according to that flux on the second particle, and then interchange the two
particles. Signalling the flux is done by the projection Ph, acting on the particle state
via its representation. When a particular flux h has been identified, it must then act on
the second particle. This gives us

∑
h∈H

ΠA
α(Ph,e)⊗ΠB

β (1,h). (2.22)

This process must then be followed by interchanging the particle representations by τ ,
which leads us to the braid operator RAB

αβ for particles ΠA
α and ΠB

β

R
AB
αβ = τ ◦ (ΠA

α ⊗ΠB
β )(R), (2.23)

where R = ∑h∈H(Ph,e)⊗ (1,h) ∈ D(H)⊗D(H) is called the universal R-matrix of
D(H) (p.104). It is the particular combination of transformations of a two-particle
state that implements the topological interaction of one particle on another.

Quasi-cocommutativity The universal R-matrix has some desirable properties. First
of all we have

∆op(Ph,g)R = R∆(Ph,g), (2.24)

ensuring that braiding and the action of the quantum double on two-particle states
commute:

R∆(Ph,g) = ∆(Ph,g)R, (2.25)

where the element provided by the comultiplication acts on a state via the appropriate
representation. This can be verified by calculating the action on a general two-particle
state (cf. [52, §2.1]). In other words: the local interchange of two particles does not
affect the long-range properties of the two-particle state.

This property is called quasi-cocommutativity (p.104) because R determines the
manner in which the coproduct is unequal to its opposite (cf. §2.2.1). For a cocommu-
tative bialgebra R = 1⊗1.

Quasi-triangularity Furthermore, the operations of braiding two particles and then
letting one decay is equivalent to letting the particle decay and then braiding the other
particle with both decay products. If we write R = ∑k Rk

l ⊗Rk
r and then denote by Ri j

the triple tensor product with Rk
l as the ith tensorand, Rk

r as the jth tensorand and 1 as
the other tensorand (so R32 = ∑k 1⊗Rk

r ⊗Rk
l ), this condition is expressed by

(∆⊗ id)(R) = R13R23 (2.26)
(id⊗∆)(R) = R13R12. (2.27)

This can be verified by direct calculation. If we define the action of R on elements
of D(H)⊗D(H) by left multiplication, the conditions (2.26) and (2.27) give us maps
from D(H)⊗D(H)→ D(H)⊗D(H)⊗D(H), which ensure the claim that braiding and
decay (or fusion) commute. Drinfeld has named this quasi-triangularity (see p.105 and
figure 2.1) [17].
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Figure 2.1: Quasi-triangularity

Yang–Baxter equation The condition (2.24) together with either (2.26) or (2.27)
give the equality

R12R13R23 = R23R13R12, (2.28)

which leads to the Yang–Baxter equation (recall figure 1.4 on p.11) for three-particle
states (1.21), assuring that braiding of three particles is uniquely defined.

2.4 Anti-particles – Antipode
From high-energy physics we know that for every particle in a theory there exists an
anti-particle carrying the opposite quantum numbers. In particular, a particle and its
anti-particle are able to fuse into the vacuum sector.

Recall that for a representation π of a group G, the anti-particle is given by the dual
representation π , defined by

π(g) = π t(g−1) ∀ g ∈ G ⇒ π = π t ◦ s, (2.29)

where s : G → G is the group operation of taking the inverse of an element, and the
superscript t denotes matrix transposition.

For our bialgebra D(H) we are now looking for an operation S which will be the
analogue of taking a group inverse. This operation is called the antipode (p. 104) and
it is given by the linear map S : D(H) → D(H) satisfying

µ ◦ (S⊗ id)◦∆ = 1ε = µ ◦ (id⊗S)◦∆. (2.30)

From the requirement (2.30), one can deduce that the antipode is an anti-algebra mor-
phism, i.e. S

(
(Ph,g)(Ph′ ,g

′)
)

= S(Ph′ ,g
′)S(Ph,g), and an anti-coalgebra morphism, i.e.

(S⊗S)◦∆ = ∆op ◦S.
The antipode for D(H) is defined by

S(Ph,g) = (Pg−1h−1g,g
−1). (2.31)

Note that the antipode does not have to be invertible, but it always is for semisimple
Hopf algebras (lemma A.3). Furthermore, although its corresponds to the inverse of
a group in the above mentioned fashion, there are some important differences: for
example S

(
λ (Ph,g)

)
= λS(Ph,g) ∀ λ ∈ C by linearity, where we might have expected

λ−1S(a).
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Anti-particles The anti-particle Π of Π is now defined by Π = Πt ◦S. If we decom-
pose the two-particle tensor product (Π⊗Π) according to the fusion rules (2.17), we
are certain† to get at least one copy of the trivial (vacuum) representation ε .

Hopf algebras A bialgebra with an antipode is called a Hopf algebra (p.104), and
it is the structure which is the closest analogue of a group in the setting of algebras.
We have seen that we need the coproduct to properly define tensor products, and the
antipode to resemble the group inverse.

Some Hopf algebras can be extended to braided Hopf algebras. In fact, the quantum
double construction turns any Hopf algebra into another, non-trivially braided Hopf
algebra. This was exactly the reason why much attention was given to these non-
commutative, non-cocommutative Hopf algebras, which were and are very interesting
to both mathematicians and physicists.

Hopf algebras have been used in a wide range of areas in physics. Mainly the
coproduct seems to be the natural way to define many-particle states, or more generally
the combination of possible outcomes of a certain process. See for instance [49] for
applications in particle physics, [9] for an approach to quantization, and [30, 11] for
uses in combinatorics.

2.5 Spin – ribbon element
We have one additional piece of data left in our quantum doubles. It is the generalized
spin, a scalar number identifying the behaviour under a 2π clockwise rotation of a par-
ticle. We envisage this operation by considering a particle as a flux–charge composite,
where the charge-part travels through the Dirac string of the flux. It thereby undergoes
a symmetry transformation dependent upon the particular value of the flux. That is, we
act on the internal particle state |ai,v j〉 of ΠA

α with the element

c = ∑
h∈H

(Ph−1 ,h).‡ (2.32)

One can calculate that

ΠA
α(c)|ai,v j〉 = α(a)|ai,v j〉 ∀i, (2.33)

where a is the distinguished element of A. The element c is called the ribbon element
and it is central in (commutes with every element of) the Hopf algebra D(H): because
a commutes by definition with every element of its centralizer, its representation value
is proportional to the unit matrix by Schur’s lemma:

ΠA
α(c) ∼ α(a) = exp(2πısA

α)1. (2.34)

The exponential will always be a root of unity, because the representation is unitary,
and it can be identified as the spin factor of the particle ΠA

α .
Please note that in this definition the exchange of two particles is not incorporated.

This can be seen by noting that for electric particles, carrying trivial flux, the exponen-
tial in (2.34) will always be unity, although we know such particles can be fermions. So

†For a proof by splitting a general vector of the tensor product representation space in a traceless part
and the trace, see [31, §B.1.3].

‡Note that in [52] the ribbon element was defined as ∑h(Ph,h), which leads to the complex conjugate
value of the spin, corresponding to counter-clockwise rotations.
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Figure 2.2: Generalized spin–statistics connection (2.35). Particle trajectories are pictured as
ribbons, and the spin factor given by the action of the ribbon element c is shown as a double twist in a ribbon.
On the left-hand side, we see the process of a particle decaying and then braiding these particles twice. This
picture is continuously deformable into the picture on the right-hand side, which denotes rotating the particle
clockwise, letting it decay and rotating the decay products counter-clockwise

we are only describing bosons, and the spin we are talking about is due to topological
interactions. If we want to include fermions, we have to put in an additional factor of
exp(ıπ) = −1.

2.5.1 Generalized spin–statistics connection

In ordinary quantum mechanics, we are faced with particles of two kinds: bosons and
fermions. It can be calculated using quantum field theory that particles that interchange
without a sign change, the bosons, always have an intergral value of spin. On the other
hand, the fermions, which pick up a sign unter interchange of two of them, always carry
half-integral spin. This is called the spin–statistics connection, a theorem introduced
by Pauli [36].

We can also put up a ‘canonical’ spin–statistics theorem for 2+1 dimensions by
saying that the interchange two particles in identical states, carrying the same quantum
numbers for both flux and charge, will give a factor exp(ı2πs), with s the spin of the
particle, which may take any non-zero integer value, according to the system at hand.
By canonical we mean that this is only valid for particles in exactly the same state.

For different particles, or identical particles in different states, this no longer holds,
but there is still a relation between spin and braiding, which we call the generalized
spin–statistics connection. It is due to the following property of the ribbon element
(A.17):

τ(R)R = (c⊗ c)∆(c)−1. (2.35)

This can be interpreted as follows (figure 2.2): on the right-hand side of the equation,
we perform a clockwise rotation on a two-particle composite, which then decays, and
we rotate the resulting particles counter-clockwise. On the left-hand side we can see
the process of braiding the two particles twice, which we considered as having decayed
from a single particle.
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2.6 Summary of the quantum double
In this chapter we have constructed the quantum double of our residual symmetry group
H, the representations of which correctly describe the spectrum of particles, accounting
for both global symmetry transformations and topological interactions. It is a |H|2-
dimensional vector space equipped with compatible algebra and coalgebra structures,
so we can compose elements and take tensor products of them. The respective axioms
ascertain that the behaviour of representations is well-defined.

This bialgebra is provided with a non-trivial braiding, which yields solutions to the
Yang–Baxter equation for all of its representations. Also, the actions of braiding and
fusion commute. Furthermore, we are given tools to define anti-particles and spin by
the antipode and the ribbon element.

We can employ the ribbon diagrams to visualize some of the processes the particles
may undertake. Remarkably, such diagrams are used in the mathematics of the highly
abstract tensor categories to aid in constructing certain proofs (see e.g. [20, ch.14]).

2.6.1 Connection between fusion and braiding
At first, one may think that fusion and braiding are two unrelated processes, although
they feature in the same theory. Indeed, how should probing the quantum numbers of
a two-particle composite be connected to its braid properties?

However, they do seem to be related, by the Verlinde formula mentioned on p.20.
The multiplicities in (2.17) of the decomposition of a tensor product of two particles,
defined by the comultiplication, are dependent as a kind of relative probability of de-
caying into a particular particle representation:

NABγ
αβC

= ∑
D,δ

SAD
αδ SBD

βδ (SCD
γδ )∗

SeD
1δ

. (2.36)

These probabilities depend on the modular S-matrix given by

SAB
αβ =

1
|H|

tr R
−2AB

αβ . (2.37)

This shows that there is a (deep) connection between fusion and braiding. For the
quantum double, this relation can be proven quite straightforwardly using a duality
property of the algebra [23].

In this light it might be clarifying to note that in the language of modular trans-
formations [16, 15], the operator T is related to the spin of a particle, and the charge
conjugation operator C transforms a particle into its anti-particle. Some properties
of the particles may be derived from this, for instance, the spin of a particle and its
anti-particle are the same, because the operators T and C commute.



Chapter 3

Condensates and confinement

In the previous chapter we classified which inequivalent particles may arise in a theory
featuring topological interactions, and built up the machinery to describe their proper-
ties under braiding, 2π-rotations and also the fusion rules. The particles form represen-
tations of the quantum double of the residual symmetry group, and this space may be
viewed as all combinations of global symmetry transformations followed by projecting
out a certain flux.

The next step in exploring these models is to look at the formation of a condensate
in some state. That is, we assume that the groundstate, instead of being the vacuum,
is now formed by a background of particles in a certain state |φ〉. Because of the
non-trivial braiding, not all particles in the original theory will be able to travel freely
through this condensate, and such particles will be confined.

In this chapter we give the proper definitions and some more algebraic tools to deal
with these phenomena, summarizing the results of [7, ch.6-8],[6]. Some proofs will
be given when they are clarifying, others are omitted and can be found in the cited
literature.

3.1 Spontaneous breaking of Hopf symmetry

3.1.1 What are condensates?

In general, the term condensate is used when a macroscopic number of a certain ex-
citation, i.e. particle, assume the same state, thus forming a new groundstate of the
system. This may come about either through spontaneous symmetry breaking or by an
external force (§1.1).

The term condensation stems from the phenomenon of Bose–Einstein condensa-
tion, which can take place in dense quantum gases or liquids and in dilute gases,
the particles of which all fall back into the groundstate below a critical temperature.
Other phenomena such as superconductivity and superfluidity are also forms of Bose–
Einstein condensation: the groundstate is a background of particles. In other words,
instead of a system where the groundstate is the vacuum, and particles enter this system
as excitations of this vacuum, the groundstate is now an indefinite number of particles
in a certain state. Other particles may exist in this new system, but they can have inter-
actions with the background particles. Therefore, they manifest themselves differently,
and may for example acquire a mass or be confined.

26
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3.1.2 Setting in Hopf-symmetric theories
Symmetry breaking (1) Recall from §§1.1-1.3 that our theory arose when a continu-
ous gauge group G was broken down to a discrete subgroup H, so that the inequivalent
topological defects are labelled by elements of H. We stated that this spontaneous
symmetry breaking was due to a potential leading to a vacuum expectation value, so
that the groundstate turned degenerate, and one particular state would be picked ‘at
random’.

Symmetry breaking (2) In the present case, we consider the residual gauge group H,
elevated to the quantum double symmetry D(H) with its particle spectrum ΠA

α , as the
unbroken theory. We contemplate a situation in which a vector |φ〉 in the representation
space of a certain irreducible representation ΠA

α is condensed, so there is a background
of particles in the state |φ〉 ∈V A

α . Again, we do not specify why this would happen, but
assume that this is achieved by varying certain parameters in an effective potential; or
by varying external parameters, such as the temperature.

Residual symmetry Firstly, we may ask ourselves what the elements (Ph,g) of our
D(H)-theory mean in the presence of a condensate. We expect that some symme-
try transformations will leave the condensate invariant, while others will change the
condensate vector. It is natural to define a residual symmetry algebra, and label the
possible excitations in the condensate by its irreducible representations. In this view,
we are repeating the process of the initial symmetry breaking from G to H.

Confinement Now, we know that particles in these theories exhibit topological inter-
actions leading to non-trivial braiding. One can already imagine that particles that do
not braid trivially with the background particles may not travel as freely through the
condensate as particles that do. When this happens, such a particle causes a half line
discontinuity in the order parameter of the condensate, and its energy increases linearly
with the system size. Therefore such particles are confined; we will treat confinement
in §3.3.

General Hopf symmetry In [7], instead of looking only at D(H)-models, it was ar-
gued that the residual symmetry could also be a general Hopf algebra. In fact, there is
a natural way to define the residual symmetry algebra using only the bialgebra struc-
ture, there is no need to restrict ourselves to the quantum double. Because of this, we
will speak about a ribbon Hopf algebra A , and only specialize to D(H) when this is
necessary or as an illustration.

3.2 The Hopf-symmetry breaking formalism

3.2.1 Definition of the residual symmetry algebra
When a group symmetry is broken down, the residual symmetry is defined as the sub-
group that leaves the favoured groundstate invariant. For groups, this all works out
nicely, as two symmetry transformations that leave the groundstate invariant will al-
ways multiply to a single transformation that does so as well.

But now we are dealing with algebras, which also possess an addition. Then, two
elements whose action leave the condensate vector invariant may add up to the zero
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element, which obviously does not. We therefore need another definition of invariant
action.

We can see what this definition should be by reverting to a different point of view:
in our condensate of particles in the state |φ〉, we can still consider interactions with the
original vacuum representation ε (which is isomorphic to Πe

1 for D(H)-models). The
vacuum can be thought of as a particle which can fuse with other particles at will, the
fusion product being identical to the particles fusing with the vacuum as in (2.16).

Now we define an element a ∈A to leave the condensate |φ〉 invariant, if it acts on
|φ〉 in the same way as it would on the vacuum:

a ⇀ |φ〉 = ε(a)|φ〉. (3.1)

This specializes to groups correctly, as the counit then reverts to the trivial representa-
tion. We see that this definition is well-defined with respect to vector space addition,
as the counit is a linear map.

Clearly, the set of all elements leaving the condensate invariant is a subalgebra of
A , because a ⇀ (a′ ⇀ |φ〉) = (aa′) ⇀ |φ〉. However, this set is in general not a sub-
Hopf algebra, moreover, it may even not be possible to define a coproduct. For this
reason, the residual symmetry algebra leaving the condensate invariant was defined in
[7] to be the maximal sub-Hopf algebra satisfying condition (3.1)†.

We denote this Hopf algebra by T .
We would like the residual symmetry algebra to be a Hopf algebra, as we are as al-

ways interested in many-particle states, and therefore need a tensor product definition.
That a such a composite state will be left invariant is guaranteed by

(ε ⊗ ε)◦∆ = ε ◦ (id⊗ ε)◦∆ = ε ◦ id = ε , (3.2)

using counitality (A.3).

Remark In [31, ch.5] it is shown that for certain physical models, this definition is
too strict. The subtlety arises due to the fact that there may be confined degrees of
freedom. Then the demand that the residual symmetry algebra be a Hopf algebra must
be abandoned, but there is a way to define tensor products of representations, which is,
after all, what we are physically interested in. We will stick to the formalism of [7].

3.2.2 Residual symmetry algebra structure
Now it is time to carefully consider which properties described in chapter 2 the residual
symmetry algebra T possesses.

Particle classification The residual symmetry algebra T is defined as those sym-
metry operations (including certain linear combinations of flux projections) that leave
the condensate invariant, and that form a Hopf algebra. The particles that can exist in
this background of condensate particles should be labelled by algebra representations
of T : they can only be distinguished by their properties under the subset of symmetry
operations in T .

Just as for groups (see §1.2), the representations of the unbroken theory A branch
into irreducible representations of the residual symmetry algebra T . This is worked
out in the next section.

†By maximal we mean the unique sub-Hopf algebra that is not a proper sub-Hopf algebra of another
proper sub-Hopf algebra of A satisfying the same condition. It is a subset of the set of all elements satisfying
(3.1), in general a smaller one.
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Many-particle states We already mentioned in §3.2.1 that we need a way to define
many-particle states. This is performed by the coproduct, accompanied by the counit,
which denotes the vacuum sector. These maps are now defined only on T , and the
demand that it be a sub-Hopf algebra states that it is closed under these maps. For
example ∆ : T → T ⊗T . However, consider the remark at the end of the previous
section.

Anti-particles It is natural to expect that if a particle is present in the residual system,
its anti-particle will as well. Fortunately, when T is a finite-dimensional sub-bialgebra
of A , so when it is closed under both multiplication and comultiplication, it is closed
under the antipode as well by lemma A.4. Therefore, we can rightfully speak of a
sub-Hopf algebra.

Braiding It would be nice if there were a description of braiding two particles in a
condensate, preferably one that would derive from the corresponding braiding of some
particles originating from A . However, we can already see that we run into problems
with this statement. An irreducible representation Π of A has a unique decomposition
into irreducible representations Ω of T . But for a single representation Ω of T , there
can be different representations Π which branch to Ω. Which ones are we to choose if
we want to braid them?

But there is also a rigorous proof by Radford [40], which states that the quantum
double of a finite-dimensional Hopf algebra does not have any proper sub-Hopf alge-
bras which are braided by the restriction of the original R-matrix. This of course does
not exclude that there may be another element that provides a quasi-triangular struc-
ture for T , but even if we are able to find it, we have to ask ourselves what it means in
relation to A .

For example, many of the condensates coming from A = D(H) ' F(H) ⊗̃CH,
which we are discussing in later chapters, will have the form T 'F(H1)⊗̃CH2, where
H1,H2 are certain subgroups of H. In [31, §B.2] it was shown that an R-matrix can be
defined for such algebras. However, the relation with RD(H) is obscure and we therefore
do not know whether this concept describes the physics of the broken phase correctly.

The question arises whether we really need a formalism for braiding at the con-
densate level. As mentioned earlier, we will argue that some of the possible particle
excitations will be confined, that is, they cannot exist independently in the system. In
that case we have no need of a description of braiding of all of these particles, just
the ones which are unconfined. In most cases, the unconfined algebra in an D(H)-
condensate will have the form of a quantum double of a subgroup of H. In that case,
the braiding is well-defined, and relates to that of D(H) in a natural way. But we are
running ahead of things now, and will return to this issue later on.

3.2.3 Determination of the residual symmetry algebra
We have defined that T be the largest (maximal) sub-Hopf algebra of A that leaves |φ〉
invariant. For semisimple Hopf algebras, there is a method to classify all its sub-Hopf
algebras, which we will now describe.

Classification of sub-Hopf algebras Recall from §2.4 that the conjugate π of a rep-
resentation π is given by π := π t ◦ S, and from §2.2.1 that the tensor product of two
representations is defined by πa ⊗πb = (πa ⊗πb)◦∆.
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We will call a set X of representations of a Hopf algebra closed under tensor prod-
ucts if all decomposition factors in πa ⊗πb are contained in X ∀ πa,πb ∈ X .

Proposition 3.1. Let A be a semisimple Hopf algebra. Each sub-Hopf algebra of A

is spanned by the matrix elements of a certain set of irreducible representations of the
dual Hopf algebra A ∗ (see §2.2.4) that closes under tensor products. And each such a
set constitutes a sub-Hopf algebra of A .

The proof is given in [7, §6.2]. However, there the stronger condition that the set
be closed under tensor products and conjugation was imposed. Because of the, earlier
mentioned, result of lemma A.4, every sub-bialgebra of a Hopf algebra is a sub-Hopf
algebra, and we do not have to additionally demand this.

To see that these elements actually form an algebra, observe the following:
Firstly, note that a ∈ A ∗ : A → C; then a matrix element of a representation of

A ∗ is a function which assigns a number in C to each element in A ∗, i.e. it is an
element of† A ∗∗ ' A . Next, the multiplication of such elements is defined by the
comultiplication of A ∗, which in turn depends on the multiplication of A . To be
precise:

µ∗∗
(
(πa)i j,(πb)kl

)
= (πa ⊗πb ◦∆∗)(i j),(kl), (3.3)

and we know that ∆∗(a) = a◦ µ . Similarly the comultiplication and antipode are also
obtained by these duality considerations.

The dual quantum double We now turn to the specific case of the quantum double
D(H). Its dual D(H)∗ is also a Hopf algebra, and its structure, determined by D(H),
can be found on p.106. In particular, as a vector space D(H)∗ ' CH ⊗F(H), its mul-
tiplication is the regular multiplication for this tensor product, and its comultiplication
is given by

∆∗(g,Ph) = ∑
h′∈H

(g,Ph′)⊗ (h′−1gh′,Ph′−1h). (3.4)

Because the multiplication is not twisted in the sense of (2.4), the irreducible represen-
tations are just the tensor product of the irreducible representations of CH and F(H)
(which are given in §2.1.2):

(ρa,Ex) : CH ⊗F(H) → GL(Vρa ⊗ v), (3.5)
(g,Ph) 7→ ρa(g)Ph(x), (3.6)

where ρa is an irreducible representation of H with representation space Vρa , Ex is
labelled by elements x ∈ H and v is a one-dimensional representation space.

So now the sub-Hopf algebras of D(H) are given by the matrix elements of a set of
these representations that is closed under tensor products. The multiplication of matrix
elements is determined by (3.3):

µ
(
(ρa,Ex)i j,(ρb,Ey)kl

)
=
(
(ρa ⊗ρx

b)(i j)(kl),Exy
)
, (3.7)

where ρx
b is the H-representation ρb with the argument conjugated by x, and the tensor

product on the right hand side is the regular tensor product for group representations.
†In general, A ∗∗ is not isomorphic to A . In particular, the dual vector space of an algebra has a

coalgebra structure only when the algebra is finite-dimensional. When the algebra is infinite-dimensional,
we can define a restricted dual, which allows for a coalgebra structure (see [20, §III.9]). We are considering
only finite-dimensional Hopf algebras. In fact, semisimplicity of a Hopf algebra implies finite-dimensional-
ity by lemma A.1.
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Implementation of the invariance condition Using the condition (3.1), we can now
determine the residual symmetry algebra:

Proposition 3.2. The residual symmetry algebra T of a vector |φ〉 ∈ V A
α is spanned

by the matrix elements of those representations (ρ,Eg) of D(H)∗ for which

ΠA
α(1,Eg−1)|φ〉 =

χρ(a)

dρ
|φ〉, (3.8)

where χρ is the character and dρ the dimension of ρ , and a denotes the distinguished
element of A.

Proof. The condition that a matrix element (ρ,Eg)i j leave |φ〉 invariant is given by

ΠA
α(ρi j,Eg)|φ〉 = ρ(kak−1)i jΠ

A
α(1,g)|φ〉 = ε(ρi j,Eg)|φ〉 = ρ(e)i j|φ〉 = δi j|φ〉, (3.9)

where the last equality holds because ρ is a group representation; k is some A-coset
representative determined by g and |φ〉.

Now take the trace, which is invariant under cyclic permutation of its argument
factors, on both sides and we are left with

χρ(a)ΠA
α(1,g)|φ〉 = dρ |φ〉, (3.10)

which is equivalent to (3.8). So all elements leaving |φ〉 invariant satisfy this equation.

On the other hand, all elements satisfying (3.8) leave |φ〉 invariant. The argument
is as follows:

The equation g−1 ⇀ |φ〉=
χρ (a)

dρ
|φ〉 shows that |φ〉 is an eigenvector of the action of

g−1 with eigenvalue
χρ (a)

dρ
. Because H is a finite group, there is an m∈N so that gm = e,

so this eigenvalue has to be a root of unity. Independently, ρ is a unitary irreducible
representation of H, so its eigenvalues are non-zero and roots of unity. The trace of
ρ(a) is then the sum of these eigenvalues. So we compare

qdρ =

dρ

∑
i=1

λi, (3.11)

where q denotes the particular eigenvalue of the action of g, and the λi are the eigen-
values of ρ(a). This equation can only be satisfied if all the λi are equal to q, which
one can see by considering vector addition in the complex plane.

Therefore ρ must be equal to q times the unit matrix, and (3.9) is satisfied: these
(ρ ,g) leave the condensate invariant.

We now show that these elements close under tensor products, i.e. that all products
also leave the condensate invariant: we have, for all pairs (ρi,Eg),(ρ j,Eg′) satisfying
(3.8),
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tr
((

(ρi,Eg)⊗ (ρ j,Eg′)
)

⇀ |φ〉
)

= tr
(
(ρi ⊗ρg

j )(kak−1)(gg′) ⇀ |φ〉
)

(3.12)

= tr
(
ρi(kak−1)

)
tr
(
ρ j(gkak−1g−1)

)
g ⇀ (g′ ⇀ |φ〉)

(3.13)

= χρi
(a)χρ j

(a)
dρ j

χρ j
(a)

(g ⇀ |φ〉) (3.14)

= χρi
(a)χρ j

(a)
dρi

χρi
(a)

dρ j

χρ j
(a)

|φ〉 (3.15)

= dρi
dρ j

|φ〉 = tr
(

ε
(
(ρi,g)(ρ j,g

′)
))

|φ〉, (3.16)

where we have used (3.7) in the first equality, and in the second the fact that the charac-
ter of the tensor product of two representation is the product of the two characters.

Form of the residual symmetry algebra Now, the set defined by (3.8) can yield
any sub-Hopf algebra, but in a lot of cases it will have an appealing form. In fact,
many sub-Hopf algebras of D(H) are of the form F(H/K) ⊗̃CN, where K is a normal
subgroup of H, and N is a subgroup of H. This is specified by the following corollary
to proposition 3.2, the proof of which can be found in [7, §6.3]:

Corollary 3.3. The equation (3.8) can only be satisfied if
χρ
dρ

is a root of unity. The

residual symmetry algebra T is of the form F(H/K) ⊗̃CN if and only if this root of
unity equals 1 for all (ρ,g) leaving the condensate invariant.

The normal subgroup K divided out is usually related to the magnetic part of the
condensate vector |φ〉. Similarly, the subgroup N relates to the unbroken electric sym-
metry, usually depending on which elements of H have trivial action under α . So, in
many cases, the residual symmetry algebra will be quite easy to find.

However, sometimes, and in particular when T is not of the form F(H/K) ⊗̃CN
due to the corollary, we will have to manually apply (3.8) to all representations of
D(H)∗ in order to find T . Indeed, such situations do arise and an example will be
worked out in detail for a dyonic condensate of D(D4) (chap. 5).

3.2.4 Particles in the condensate
We have already mentioned that particles in the broken phase should be labelled by
irreducible representations of T . Now we ask ourselves how these relate to particles
in the original A -theory. After all, we can envisage an A -particle ‘entering’ the con-
densate from an unbroken vacuum region. However, an element of A outside T no
longer constitutes a valid symmetry transformation, because it changes the condensate
vector.

Note again that T is a subalgebra, so the multiplication of elements is inherited
from A , and it contains the the unit element 1. But it is in general a different algebra,
having different irreducible representations, which we label by Ω.

Representation decomposition Now, every irreducible representation Π of A will
also be a representation of the subalgebra T by restriction, because T is closed under
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multiplication. However, Π need no longer be irreducible. So in general, Π decom-
poses into irreducible representations of T :

Π|
T

= ⊕iNiΩi, (3.17)

where the direct sum runs over all irreducible representations of T and Ni gives the
multiplicity (as components in the direct sum) of Ωi in this decomposition.

So we see that we have branching from A -particles to T -particles. If we were
talking about finite groups and subgroups, we would determine this branching by using
characters of group representations, which are orthogonal to one another. For Hopf
algebras, a similar notion exists, see e.g. [53].

Decomposition for the quantum double For the quantum double D(H), the charac-
ters χA

α of the representations ΠA
α are (just) given by the matrix trace of those represen-

tations. This results in

χA
α (Ph,g) = 1A(h)1Nh

(g)χα(k−1
h gkh), (3.18)

where 1A(h) = 1 if h is an element of the conjugacy class A and 0 otherwise; 1Nh
(g) = 1

if g commutes with h and 0 otherwise; kh is a Na-coset representative, such that h =
khak−1

h , where a is the distinguished element of A.
For these characters, we have the orthogonality relation [15]:

∑
h,g∈H

χA
α (Ph,g)χB

β (Ph,g)∗ = |H|δABδαβ . (3.19)

For sub-Hopf algebras of the form T ' F(H/K) ⊗̃CN the character is defined anal-
ogously: elements of CN can act on elements of F(H/K) by conjugation of the ar-
gument. Picking a distinguished element o in H/K, we obtain a subset O of H/K,
called the orbit, consisting of all elements which can be reached by conjugating o by
an element of N. The irreducible representations are then labelled by the orbits O , and
irreducible representations α of the stabilizer No of o in N, similar to what is discussed
in §2.1.3†.

To determine the decomposition components of a representation ΠA
α of D(H), we

should apply the orthogonality relation (3.19) to χA
α and the character of each irre-

ducible representation of T , but with the sum restricted to (basis) elements of T only.
In the next chapter, we will see some explicit examples of what is discussed here,

which may help to gain insight in the particular structure one encounters in these kinds
of models.

3.2.5 Additional requirements on condensates

In what is discussed in this chapter, the formalism allows for condensates of any state
vector in the representation space of any particle. However, we must impose the con-
dition that the condensate state have trivial self-braiding:

R(|φ〉⊗ |φ〉) = τ ◦
(
(ΠA

α ⊗ΠA
α)(R)

)
(|φ〉⊗ |φ〉) = |φ〉⊗ |φ〉. (3.20)

†This construction can be generalized to any action of N on any set X . This is then called a transforma-
tion group algebra, and the representation structure was worked out in [22, 21]
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This demand states that there should be trivial topological interactions between parti-
cles in the condensate state. Otherwise, the particles introduce discontinuities in the
order parameter everywhere, and we cannot speak of a true condensate.

Furthermore, this condition is required in order to properly define a Hopf algebra
structure on the unconfined algebra, treated in the next section (cf. [31, §5.2.4]).

Similar is the notion of trivial spin, that is ΠA
α(c) = 1, which is equivalent to

α(a) = 1. This is related to the the requirement of having Bose-condensates; Fermi-
condensates are now studied both theoretically and experimentally, and we could intro-
duce an extra minus sign on interchanging to particles, as mentioned at the end of §2.5.
But as we do not know what to make of an ‘anyon-condensate’, we for the moment
discard states with non-trivial spin as possible condensate candidates.

In many cases, these requirements can be calculated at once for a whole class of
representations, for instance, a vector in the representation space of a representation
Πe

α in the electric sector (see p.17). Such a representation carries trivial flux and it can
be easily seen that the conditions of both trivial self-braiding and trivial spin are always
satisfied. We will perform more of these calculations in chapter 4.

In other cases, we may have to manually verify these conditions.

3.3 Confinement

3.3.1 Braiding with the condensate
In the previous section, we have treated the irreducible representations of the residual
symmetry algebra T after symmetry breaking by the formation of a condensate. We
then stated that these representations are the possible particles that could exist in the
condensate.

But this is not the whole story: although each such particle transforms correctly
under the residual symmetry transformations, corresponding to external probing by
global symmetry transformations and topological interactions, the particles may also
undergo topological interactions with the condensate particles.

If these topological interactions are non-trivial, a domain wall will be attached to
the particle, because the vacuum state will be different on each side of the wall: a
vacuum state will be transformed due to the topological interactions when crossing this
wall.

Because of these considerations, such particles cannot exist freely in the conden-
sate and are confined. However, it is possible that the string drawn by one particle ends
on another particle, like the quark–anti-quark meson-composites. Continuing this anal-
ogy, one may also imagine many-particle (baryonic) composites, which when bound
together braid trivially with the background, and can therefore exist as effectively ‘sin-
gle’ particles.

3.3.2 Properties of non-confined particles
Again, before we mathetically derive the formalism describing the non-confined par-
ticles, we predict its structure by looking at the properties we want it to possess from
physical considerations.

Hopf algebra structure Firstly, we wish the particles to be representations of some
algebra U of symmetry transformations which transform a state vector braiding triv-
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ially with the condensate particle, into another that does as well. Clearly, such sym-
metry transformations should also leave the condensate invariant, so U should be a
subspace of T .

Furthermore, we want unconfined particles to be able to fuse into another uncon-
fined particle, so U should be equipped with a comultiplication which closes on this
subspace. As mentioned before, two confined particles may form a composite which is
unconfined, but for now, this is not of our concern. The vacuum representation given
by the counit ε should be included in U as well, since this ‘particle’ is of course always
unconfined.

It also seems natural to demand that when a particle is unconfined, its anti-particle
be unconfined as well. If this were not the case, vacuum fluctuations could cause the
creation of an unconfined and a confined particle. So U needs an antipode map, under
which it should close.

All together this gives us the structure of a Hopf algebra.

Braiding Unlike T (cf.§3.2.2), we do want U to be equipped with a braiding. The
unconfined particles should be able to move freely in the condensate, by which we
mean that they still could have topological interactions with each other as described in
§1.4.

It also makes sense that this braiding should correspond with braiding in the orig-
inal symmetry algebra A . For example, recall that the braid matrix R of the D(H)-
models lets the charge of one particle be conjugated by the flux of the other; the un-
confined particles also have ‘flux’ and ‘charge’, which should obey the same braiding
rules.

Because T is a subalgebra of A , the natural definition of the restriction of the
R-matrix to T is by orthogonal projection denoted by P (see also the next section).
Although U can be thought of as a subset of T (by choosing equivalence classes
according to the map Γ described in the next few pages), the orthogonal projection
onto U is not the correct way to define a universal R-matrix. Rather, we expect that it
be of the following form:

Conjecture 3.4. The universal R-matrix of the unconfined algebra U is given by

(Γ⊗Γ)◦ (P⊗P)(R
A

). (3.21)

It has not been proven yet that this constitutes a valid universal R-matrix in all cases,
but we will see in §5.2.2 that for a certain dyonic condensate in a D(D4)-theory this
leads to the correct solution, whereas the orthogonal projection on U does not. This is
in contrast to the remark at the end of §7.1 in [7].

Hopf quotient One might expect that U should be a sub-Hopf algebra of T , just as
T is of A . But this is not the case; we will present some evidence now, and will give
a rigorous mathematical treatment later.

First of all, when taking a subalgebra, one ‘throws away’ all elements not contained
in the subalgebra. Consequently, the representations of the original algebra branch into
representations of the subalgebra. But in the case of T , we already know how the
particles behave, only now some of them are confined while others are not. That is,
we are reclassifying the representations of T . Therefore, the unconfined particles,
presented as irreducible representations of U , should be in one-to-one correspondence
with those irreducible representations of T which are unconfined.
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Next, we have seen that a sub-Hopf algebra of a braided Hopf algebra need not
have a braiding. Moreover, a quantum double possesses no sub-Hopf algebras which
have a braiding derived from the original braiding (see §3.2.2).

From these considerations, we suspect that U is not a sub-Hopf algebra of T , but
of another form, in particular one which carries the unconfined representations from
T over to U . The structure we need turns out to be a Hopf quotient†.

3.3.3 Algebraic structure of the unconfined algebra

We will now derive the structure of U , following the argument in [7, §7.1].

Hopf quotients A Hopf quotient of a Hopf algebra A is a Hopf algebra B, such that
there exists a surjective Hopf morphism Γ : A → B. This is of course analogous to
the definition of a quotient space Y of a space X , where each element of x is sent to
an element of y, and elements of X satisfying some equivalence relation are sent to the
same element in Y .

One property of a Hopf quotient B of A is that its irreducible representations ρ
are in one-to-one correspondence with the irreducible representations τ of A which
factor over Γ, that is, τ = ρ ◦Γ for some τ [7, prop.2 in §6.2]. This is exactly what we
would like them to be, as mentioned in the previous section.

Furthermore, if A is braided with R-matrix R
A

, then B is braided by (Γ⊗Γ)(R
A

)
(lemma A.6). However, this is of no direct use to us, as we have seen that T is not
necessarily braided.

It turns out that if B∗ is a sub-Hopf algebra of A ∗, the dual of A , then B∗∗ ' B

is a Hopf quotient of A [7, §6.2]. Because the irreducible representations of T which
are unconfined are closed under tensor products, their matrix elements span a sub-Hopf
algebra U ∗ of T ∗ by proposition 3.1. This sub-Hopf algebra is then the dual of the
Hopf quotient U , the symmetry algebra of unconfined particles.

Implementation of the braid condition Now we want to determine which represen-
tations of T braid trivially with the condensate vector. In fact we have to define what
we mean by this braiding: the condensate vector is an element of the representation
space of a representation Π of A , whereas the particle is a representation Ω of the
residual symmetry algebra T , for which we have not defined any braiding.

The most natural choice is to braid these particles by making use of the braid
description in A , so by using R = R

A
. Naively, we would write R|ω〉 ⊗ |φ〉 =

τ
(
(Ω⊗Π)(R)|ω〉⊗ |φ〉

)
. However, R is an element of A ⊗A and the action of Ω

is only defined for elements of T . To solve this, we project this part of the braid
matrix orthogonally on T , denoted by the projection operator P.

Now we state that a particle braids trivially with the condensate if it does so in the
same way as the vacuum representation ε . The conditions on Ω then have the form

(
(Ω◦P)⊗Π

)
(R)(|ω〉⊗ |φ〉) =

(
Ω(1)(ε ◦P)⊗Π

)
(R)(|ω〉⊗ |φ〉)

(
Π⊗ (Ω◦P)

)
(R)(|φ〉⊗ |ω〉) =

(
Π⊗Ω(1)(ε ◦P)

)
(R)(|φ〉⊗ |ω〉). (3.22)

†At the end of §3.2.1 it was remarked that extensions to the theory show that in some physical situations,
T is not a Hopf algebra, because there is no well-defined comultiplication, which is due exactly to the
presence of confined particle representations. In that case, the considerations given here still apply, and the
unconfined algebra should have a braided Hopf algebra structure.
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Next we translate these conditions on irreducible representations of T into conditions
on their matrix elements. We therefore define left and right actions of elements of T ∗

on the representation space VΠ of Π, turning it into a left and right T ∗-module (see
p.103), by

f ⇀ |v〉 = ∑
k

( f ◦P)(Rk
l )⊗

(
Π(Rk

r)|v〉
)

(3.23)

|v〉 ↼ f = ∑
k

(
Π(Rk

l )|v〉
)
⊗ ( f ◦P)(Rk

r), (3.24)

where f ∈ T ∗, |v〉 ∈ VΠ and R = ∑k Rk
l ⊗Rk

r . It is shown that these actions respect
multiplication in T ∗ in [7, §7.1], making use of the fact that the comultiplication in A

commutes with the projection onto T . The braiding is now implicitly defined in these
actions.

The conditions (3.22) now become

Ωi j ⇀ |φ〉 = Ωi j(1)ε ⇀ |φ〉 (3.25)

|φ〉 ↼ Ωi j = Ωi j(1)|φ〉 ↼ ε, (3.26)

on matrix elements Ωi j of irreducible representations of T . Because the subalgebras of
T ∗ are spanned by matrix elements of a set of irreducible representations that closes
under tensor products, when one matrix element of a certain representation satisfies
(3.25) and (3.26), the others do as well.

Conditions for F(H/K) ⊗̃CN We mentioned that many residual symmetry algebras
T of some quantum double D(H) have the form F(H/K) ⊗̃CN, where K is a normal
subgroup, and N a subgroup of H. For these cases, the conditions (3.25) and (3.26)
reduce to more explicit formulae.

The irreducible representations for such algebras are labelled by N-orbits B⊂H/K,
and irreducible representations β of the centralizer Nb of a distinguished element b ∈
B, as mentioned in §3.2.4. The action is defined by (2.10). We can expand |φ〉 =

∑p,q ωpq|apvq〉; by the supp(|φ〉) (the support of |φ〉) we mean those |ap〉 for which
∃q : ωpq 6= 0.

Proposition 3.5. Let T be of the form F(H/K)⊗̃CN, with irreducible representations
ΩB

β . Then the condition (3.25) reduces to

1
|K| ∑

k∈K
ΠA

α(1,ηk)|φ〉 =
1
|K| ∑

k∈K
ΠA

α(1,k)|φ〉 ∀η ∈ B. (3.27)

The condition (3.26) reduces to

ap /∈ N ∨
(
β (x−1

η apxη) = 1 ∀η ∈ B
)

∀ap ∈ supp(|φ〉), (3.28)

where xη ∈ N is defined by xη bx−1
η = η , so that the set {xη bx−1

η } = B.

We state the proof, translating the one given in [7, §7.3] to our notation.

Proof. Firstly, note that the orthogonal projection P
T

on T is given by

P
T

(Ph,g) =
1
|K| ∑

k∈K
(Phk,g)1N(g). (3.29)
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The representation space of ΩB
β is spanned by |ηwi〉, with η ∈ B and |wi〉 basis vectors

of β . We therefore label its matrix elements by (ΩB
β )η ,ζ

i, j
. We can then write (cf. (2.10))

(ΩB
β )η ,ζ

i, j ( f ,g) = f (xη bx−1
η )1Nb

(x−1
η gxζ )βi j(x

−1
η gxζ ) ∀( f ,g) ∈ T ' F(H/K) ⊗̃CN.

(3.30)
The left action of such a matrix element on the condensate vector is given by (3.23):

(ΩB
β )η ,ζ

i, j ⇀ |φ〉 = ∑
h

(ΩB
β )η ,ζ

i, j

(
P
T

(Ph,e)
)
⊗ΠA

α(1,h)|φ〉

=
1
|K| ∑h

∑
k∈K

(ΩB
β )η ,ζ

i, j (Phk,e)⊗ΠA
α(1,h)|φ〉

= ∑
h

∑
k

1Nb
(x−1

η xζ )βi, j(x
−1
η xζ )δhk,η ⊗ΠA

α(1,h)|φ〉

= 1Nb
(x−1

η xζ )βi, j(x
−1
η xζ )∑

k
ΠA

α(1,ηk)|φ〉.

We in (3.25) require that this be equal to

(ΩB
β )η ,ζ

i, j (1,e)ε ⇀ |φ〉 = 1Nb
(x−1

η xζ )βi, j(x
−1
η xζ )∑

h
∑
k

δe,hk ⊗ΠA
α(1,h)|φ〉

= 1Nb
(x−1

η xζ )βi, j(x
−1
η xζ )∑

k
ΠA

α(1,k)|φ〉,

which leads to (3.27).
For the second part, we expand |φ〉 = ∑p,q ωpq|apvq〉. The right action of a matrix

element is given by (3.23):

|φ〉 ↼ (ΩB
β )η ,ζ

i, j = ∑
h

∑
p,q

ωpqΠA
α(Ph,e)|ap,vq〉⊗ (ΩB

β )η ,ζ
i, j

(
P
T

(1,h)
)

= ∑
h

∑
p,q

ωpqPh(ap)|ap,vq〉1Nb
(x−1

η hxζ )βi, j(x
−1
η hxζ )1N(h)

= ∑
p,q

1N(ap)ωpq|ap,vq〉1Nb
(x−1

η apxζ )βi, j(x
−1
η apxζ ).

We demand in (3.26) that ∀η ,ζ ∈ B this be equal to the expression obtained by acting
on the right by the vacuum representation:

(ΩB
β )η ,ζ

i, j (1,e)|φ〉 ↼ ε = 1Nb
(x−1

η xζ )βi, j(x
−1
η xζ )∑

h
ΠA

α(Ph,e)|φ〉ε(1,h)1N(h)

= 1Nb
(x−1

η xζ )βi, j(x
−1
η xζ )∑

p,q
1N(ap)ωpq|ap,vq〉.

When ap /∈ supp(|φ〉) or ap /∈ N this relation is trivially satisfied. The demand then
reduces to

ap /∈ N ∨
(
1Nb

(x−1
η apxζ )βi, j(x

−1
η apxζ ) = 1Nb

(x−1
η xζ )βi, j(x

−1
η xζ )∀η ,ζ

)

∀ap ∈ supp(|φ〉). (3.31)

When η = ζ this further reduces to

ap /∈ N ∨1Nb
(x−1

η apxη)βi, j(x
−1
η apxη) = δi, j ∀ap ∈ supp(|φ〉). (3.32)
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If this holds, then (3.31) will hold for all η ,ζ because then

δi, j = 1Nb
(x−1

η apxη)βi, j(x
−1
η apxη)

= 1Nb
(x−1

η apxη)1Nb
(x−1

η xζ )βi, j(x
−1
η apxη)βi, j(x

−1
η xζ )βi, j(x

−1
ζ xη)

= 1Nb
(x−1

η apxη)βi, j(x
−1
η apxζ ) · 1Nb

(x−1
η xζ )βi, j(x

−1
ζ xη).

If ap ∈ N then x−1
η apxη ∈ N, because by definition xη ∈ N. Now we will show that

x−1
η apxη ∈ K, and that the action of N ∩K on H/K is trivial so that x−1

η apxη ∈ Nb, in
which case (3.32) reduces to ap /∈ N ∨β (xη apx−1

η ) = 1 ∀ap ∈ supp(|φ〉).
The orthogonal projection (3.29) of (Pe,e) is proportional to ∑k∈K(Pk,e). This is

an element of T , so we must have

∑
k

(Pk,e) ⇀ |φ〉 = ε
(

∑
k

(Pk,e)
)
|φ〉 = ∑

k
δe,k|φ〉 = |φ〉.

When we expand |φ〉, this gives the relation

∑
k

∑
p,q

ωpqPk(ap)|apvq〉 = ∑
p,q

ωpq|apvq〉,

which is only true if all ap ∈ supp(|φ〉) are elements of K.
We have seen that x−1

η apxη ∈ N ∩K ∀ap ∈ supp(|φ〉). We will now show that
N ∩K ⊂ Nb ⊂ N. Take an element n ∈ N ∩K. Its action on hK ∈ H/K is given by
conjugation: nhKn−1. But since n ∈ K we have Kn−1 = K. Furthermore nh = hh−1nh,
and h−1nh ∈ K, because K is a normal subgroup of H. All this gives nhKn−1 = hK.
The action of N ∩K on H/K is trivial, b is an element of H/K, so N ∩K ⊂ Nb.

We find that (3.32) reduces to (3.28), which concludes the proof.

It can be shown that the set D
(
N|φ〉/(K ∩N|φ〉)

)
always satisfies the relations of

the proposition above [7, prop. 9]. However, we will find examples of condensates
in which there are more solutions, even when the residual algebra T is of the form
F(H/K) ⊗̃CN|φ〉. But when we demand that the unconfined algebra U be braided,
this quantum double does give the correct result.

3.3.4 Domain walls
We now return to the issue of the confined particles. When such a particle travels
through the condensate, due to topological interactions it will transform condensate
vectors. We can choose a reference particle in the condensate, and then determine the
states of the other particles relatvive to this one. As the confined particle continues it
path, condensate particles ‘on the other side’ get transformed, and this costs a finite
amount of energy.

The confined particle is said to draw a string, which can be interpreted as a do-
main wall, on one side of which background particles are in a different, not symmetry-
related, state than the one of those on the other side. This domain wall cannot be re-
moved by symmetry transformations, and unconfined particles braiding trivially with
the background particles on one side, might not do so on the other side.

We would like to classify the domain walls, preferably in such a way, that the
residual symmetry algebra T is built up from two parts: the unconfined algebra U ,
and a part describing the domain walls. The concept of a coset of a centralizer in group
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theory comes to mind: the particles would consist of a part that braids trivially with the
condensate, affording a closed multiplication, which induces an equivalence relation.
When divided out, we are left with a set of representatives classifying the domain walls.

It turns out that there is such a structure, but it does not satisfy all of our needs, and
lacks some features we might expect it to have at first.

Hopf kernels The map Γ : T → U is a morphism, and a natural question to ask is
what its kernel is. The kernel is usually the set of elements that get sent to 0, and then
two elements of T which are sent to the same element of U are additively related by
an element of the kernel. But for Hopf algebras, this definition is not appropriate, as
the coalgebra structure is ignored. Instead we have left and right Hopf kernels, defined
by

LKer(Γ) = {t ∈ T |(Γ⊗ id)◦∆(t) = 1
U
⊗ t}, (3.33)

RKer(Γ) = {t ∈ T |(id⊗Γ)◦∆(t) = t ⊗1
U
}. (3.34)

These constructions possess an algebra structure†, and are related by S
(
LKer(Γ)

)
=

RKer(Γ) and vice versa‡, where S is the antipode of T , which applies as the left and
right kernel are subsets of T .

Hopf kernel classifies domain walls The conjecture is that the domain walls in a
|φ〉-condensate are classified by either LKer(Γ) or RKer(Γ) (conjecture 1 in [7, §7.2]).
The particular choice is not important, as the kernels are related by the antipode, and
when these algebras are semisimple, this relation is an isomorphism. We will now only
refer to LKer(Γ).

A desirable property of these Hopf kernels is that when ρ denotes a confined parti-
cle and σ an unconfined particle, the restriction to a Hopf kernel of the tensor product
(ρ ⊗σ) ◦∆

T
decomposes into a number of copies of the restriction of ρ to the Hopf

kernel. In other words, a wall is defined up to fusion with an unconfined particle.
Furthermore, it turns out that, as an algebra, T is isomorphic to a so-called crossed

product of LKer(Γ) and U . The crossed product is one of many constructions devised
to create algebras out of known other algebras¶. This cross product is described in
[7, §7.2], a general treatment can be found in [30]. We shall not repeat it here, as
it would add little to the understanding of the material at hand. However, this may
be an interesting subject for future research; more understanding of the details of the
construction may lead to a proof of the above stated conjecture.

Domain walls for F(H/K) ⊗̃CN When T is of the form F(H/K) ⊗̃CN and the
algebra of unconfined particles is isomorphic to D(N/N ∩K), the left and right Hopf
kernels also acquire a compact form. Define N as the subgroup of H/K consisting of
cosets nK of elements of N; this subgroup is isomorphic to N/N ∩K. Then

LKer(Γ) ' F(N\(H/K))⊗C(N ∩K), (3.35)

RKer(Γ) ' F((H/K)/N)⊗C(N ∩K). (3.36)

Here the symbol \ denotes a right coset. This is shown in corollary 3 in [7, §7.3].
†Moreover they are right resp. left coideal subalgebras: they are subalgebras of T and ∆

(
LKer(Γ)

)
⊂

T ⊗LKer(Γ), ∆
(
RKer(Γ)

)
⊂ RKer(Γ)⊗T .

‡For semisimple algebras, the “vice versa”-statement is trivial by S2 = id (lemma A.3)
¶For an overview of such constructions for Hopf algebras, see [2, §2]
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Figure 3.1: Overview of Hopf symmetry breaking

3.4 Summary

In this chapter we have seen how to describe symmetry breaking in a system featuring
Hopf symmetry. To a large extent, this can be carried out for any Hopf algebra A .

First, when a condensate in a certain state |φ〉 is formed, the Hopf algebra A is
broken down to a sub-Hopf algebra T of elements that leave the condensate invari-
ant in the sense that their action on condensate particles is the same as on ‘vacuum
particles’ ε . The particles of the original Hopf algebra decompose into irreducible
representations of the residual symmetry algebra.

Next, making use of the braiding prescription of the original Hopf algebra, we are
able to determine which of the possible excitations in the condensate braid trivially with
condensate particles, and will therefore be unconfined. These unconfined particles are
representations of yet another Hopf algebra U , which is a Hopf quotient of the residual
symmetry algebra T through the surjective Hopf map Γ. The unconfined algebra U is
again (at least in most cases) quasi-triangular, so that there is a prescription for braiding
of unconfined particles.

Furthermore, we can define the Hopf analogue of a kernel of this map, the left or
right Hopf kernel of Γ, a subalgebra of T . The excitations in T then decompose into
irreducible representations of this Hopf kernel, in such a way that these representations
label the inequivalent domain walls that may form in the condensate: the process of an
unconfined particle fusing with such a wall does not alter that wall, and all unconfined
excitations decompose into the ‘trivial’ domain wall.

This is all pictured schematically in figure 3.1.

For the case of the quantum double of a finite group, explicit formulae where found
for a large class of condensates.



42 Chapter 3. Condensates and confinement

Finite group G Hopf algebra A

Group multiplication gg′ Algebra multiplication aa′

Irreducible representations
π : G → GL(V ) Π : A → GL(V )

Every representation of a finite group is
completely reducible

A semisimple ⇒ all representations
are completely reducible; D(H) is se-
misimple when CH, CH∗ are semisim-
ple

Tensor product representation
(π ⊗π ′)(g) = π(g)⊗π ′(g) (Π⊗Π′)(a) = (Π⊗Π′)◦∆(a)

Anti-particle
π(g) = π t(g−1) Π = Πt ◦S

Symmetry breaking
Residual symmetry group
{g ∈ G|g ⇀ |φ〉 = |φ〉}

Residual symmetry algebra
{a ∈ A |a ⇀ |φ〉 = ε(a)|φ〉}

Table 3.1: Comparison of group and Hopf algebra concepts

Comparison to group symmetry It may be enlightening to compare the familiar
concepts of group theory, applied to symmetries in physics, to the quantum double
symmetries we have developed here. In both cases elements of the group or algebra
represent symmetry transformations, which for our purposes include projections Ph,
being the result of a sequence of symmetry transformations, see §2.1.1. These trans-
formations affect particles by action on the particle state by the representation value of
such elements.

Symmetry breaking by some mechanism leaves the groundstate invariant under a
subgroup H of the original symmetry group G. The invariance demand is g ⇀ |φ〉 =
|φ〉. In Hopf symmetry we define invariance as “acting in the same way as on the
vacuum”, that is a ⇀ |φ〉 = ε(a)|φ〉.

An overview of corresponding concepts is listed in table 3.1.
The other feautures of the Hopf algebra symmetry breaking scheme do not translate

as nicely. For instance confinement is a consequence of the braid properties of the
excitations in the condensate, which has no equivalent in ordinary group symmetry
breaking.
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Quantum double symmetry of
even dihedral groups

We have now built up a giant toolbox which allows us to calculate the particle ‘spec-
trum’ (the spectrum of internal quantum numbers) of a system featuring quantum dou-
ble symmetry, as well as all possible condensates with their unconfined particles and
domain walls. We can now turn to actually performing those calculations, which con-
stitute an extensive part of the work done for this thesis.

Finite subgroups of SO(3) In chapter 1, we discussed how we could get quantum
double symmetries when a continuous symmetry group was spontaneouly broken down
to a finite subgroup. A logical choice for such a group to look at would be the group of
rotations in three dimensions SO(3), as many systems possess such symmetry. How-
ever, SO(3) is not simply connected, which leads to some subtleties in the arguments
concerning homotopy theory. These problems can be evaded by proceeding to the uni-
versal covering group, which is always simply connected (see [33, §5],[52, §1.4.1],[31,
§2.3.1]). For example, the universal covering group of SO(3) is SU(2).

Still, the finite subgroups of SO(3) are interesting examples to look at, not in the
least because they comprise some of the simplest groups. The finite subgroups of SO(3)
are the cyclic groups of order n, Zn, the dihedral groups of order 2n, Dn, the tetrahedral
group T of order 24, the octahedral group O of order 48, and the icosahedral group I
of order 60.

The cases of D(H) with H Abelian, and of D(Dn) for n odd were studied in [7].
Some cases of T , O and I were studied in [5]. We will now treat the dihedral groups
with n even.

4.1 The even dihedral groups
The group Dn ' Zn oZ2 is given by the generators r en s as follows:

Dn = {smrk | s2 = rn = 1, srk = rn−ks} m = 0,1; k = 0, . . . ,n−1 (4.1)

Note that rn−k = (rk)−1 ≡ r−k and srk = rn−ks = (srk)−1. This group has 2n elements
and e = s0r0. The main difference between the odd and even dihedral groups comes
from the fact that rn/2 = r−n/2 for n even, so that this is a central element.

43
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We will take n to be even from now on. The structure of Dn, n odd, is given in the
appendix A.4.1.

The n
2 +3 conjugacy classes of Dn are

[e] = {e}; [rn/2] = {rn/2}; [rk] = {rk,r−k};

[s] = {s,sr2, . . . ,srn−2}; [sr] = {sr,sr3, . . . ,srn−1}. (4.2)

The centralizers of the elements of Dn are

Ne = Dn,

N
rn/2 = Dn,

Nrk = {r j | j = 0, . . . ,n−1} ' Zn,

Nsr2i = {e,rn/2,sr2i,sr2i+ n
2 } ' D2 i = 0, . . . ,

n
2
−1,

Nsr2i+1 = {e,rn/2,sr2i+1,sr2i+1+ n
2 } ' D2 i = 0, . . . ,

n
2
−1. (4.3)

The fact that the last two centralizers are isomorphic to D2 can be seen from the multi-
plication tables

Nsrk e rn/2 srk srk+n/2

e e rn/2 srk srk+n/2

rn/2 rn/2 e srk+n/2 srk

srk srk srk+n/2 e rn/2

srk+n/2 srk+n/2 srk rn/2 e

D2 e r s sr
e e r s sr
r r e sr s
s s sr e r
sr sr s r e

The centralizer of an element in a conjugacy class is isomorphic to those of every
element in that class (lemma A.7). We can therefore define the centralizer of a class by
the centralizer of the distinguished element.

4.1.1 Irreducible representations of Dn

The even dihedral group Dn has four one-dimensional representations

J0(d ∈ Dn) = 1,

J1(e,r
k) = 1, J1(srk) = −1,

J2(e) = 1, J2(r
k) = (−1)k, J2(srk) = (−1)k,

J3(e) = 1, J3(r
k) = (−1)k, J3(srk) = −(−1)k. (4.4)

The other n
2 −1 irreducible representations α j are two-dimensional, and when we de-

note the first root of unity by q ≡ eı 2π
n , they are given by†

α j(r
k) =

(
q jk 0
0 q− jk

)

, α j(srk) =

(
0 q− jk

q jk 0

)

. (4.5)

The character table of Dn is given by
†We have here chosen a particular basis, actually the one in which the matrices take the simplest form.

We will always work in this basis without further comment. Also note that these are the complex represen-
tations. It is also possible to give real representations, as was done for example in [7, §5.1]. But as we will
always have Hilbert spaces as representation spaces, there is no need to restrict ourselves in this manner.



4.1. The even dihedral groups 45

Dn [e] [rn/2] [rk] [s] [sr]
J0 1 1 1 1 1
J1 1 1 1 −1 −1
J2 1 (−1)n/2 (−1)k 1 −1
J3 1 (−1)n/2 (−1)k −1 1
α j 2 2(−1) j q jk +q− jk 0 0

We will also need the irreducible representations of Zn, as some centralizers are
of that form. The group is given by one generator r and one relation rn = e. The n
irreducible representations β j are defined by

β j(r
k) = q jk. (4.6)

4.1.2 Irreducible representations of D(Dn)

Now we turn to the quantum double of Dn. It is a 4n2-dimensional Hopf algebra, and
its irreducible representations are labelled by conjugacy classes of Dn, and irreducible
representations of the centralizers of those classes (see §2.1.3).

We will label the irreducible representations of the centralizers as follows:

N[e],N[rn/2]
' Dn by Ji,α j,

N
[rk]

' Zn by βl ,

N[s],N[sr] ' D2 by Ji. (4.7)

Note that although we have given them the same labels, the representations Ji are not
isomorphic: for [e] and [rn/2] they are the one-dimensional representations of Dn, while
the D2-representations of N[s] and N[sr] act on {e,rn/2,s,srn/2} and {e,rn/2,ss,srn/2+1}

respectively. For example J2(r
n/2) = 1 for [e] and [rn/2] when n

2 is even, whereas
J1(r

n/2) = −1 for [s] and [sr].
There are 1

2 n2 +14 irreducible representations. They are

Πe
Ji

Πe
α j

Πrn/2

Ji
Πrn/2

α j

Πrk

βl
Πs

Ji
Πsr

Ji







i = 0,1,2,3; j = 0, . . . , n
2 −1;

k = 0, . . . , n
2 −1; l = 0, . . . ,n−1.

(4.8)

The dimension dA
α of an irreducible representation ΠA

α of D(H) is given in (2.8) by the
product of the number of elements in A and the dimension of α .

Recall from §2.5 that the spin sA
α of a particle ΠA

α is determined by the represen-
tation value on the ribbon element c = ∑h(Ph,h), which amounts to ΠA

α(c) = α(a),
where a is the distinguished element of A. This value is a scalar times the unit matrix,
because c is central in D(H), and we identified this value, a root of unity because ΠA

α
is unitary, with the spin of the particle.

The dimensions and spin values of the irreducible representations of D(H) are listed
in table 4.1.

Symmetry breaking Now we proceed to examine the possible condensates that can
form in D(Dn)-theories, together with a treatment of the unconfined particles and do-
main walls.
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D(Dn) Πe
Ji

Πe
α j

Πrn/2

J0,1
Πrn/2

J2,3
Πrn/2

α j
Πrk

βl
Πs

J0,2
Πs

J1,3
Πsr

J0,3
Πsr

J1,2

dA
α 1 2 1 1 2 2 n

2
n
2

n
2

n
2

sA
α 1 1 1 (−1)n/2 (−1) j q−lk 1 −1 1 −1

Table 4.1: Dimensions and spin of irreducible D(Dn)-representations

We will treat consecutively condensates in the electric, the magnetic and the dyonic
sector (see p.17). We start each section by exploring a possible general structure of
these condensates. When this fails, the condensates are calculated by hand, that is by
checking condition (3.8) for all irreducible representations of D(Dn)

∗, and conditions
(3.25) and (3.26) for irreducible representations of T .

We will be able to calculate most condensates for all n, but for the dyonic conden-
sates |φ〉 ∈ Πrn/2

Ji
, i = 1,2,3, this is not as easy. However, it turns out to be a very

interesting case, which we treat extensively in chapter 5 for Πr2

J1
in a D(D4)-theory.

4.2 Electric condensates
By electric condensates we mean condensates of states |φ〉 in the representation space
of a representation carrying trivial flux, so when A = [e]. Because these particles do
not cause topological interactions on other particles entering the condensate, we expect
that the theory should reduce to the regular breaking of the gauge group; that is, the
magnetic part F(H) of the symmetry algebra D(H) should not be affected.

Trivial self-braiding and spin Particles Πe
α have trivial self-braiding:

τ ◦ (Πe
α ⊗Πe

α)(R)(|φ〉⊗ |φ〉) = τ ◦ (Πe
α ⊗Πe

α)
(

∑
h

(Ph,e)⊗ (1,h)(|φ〉⊗ |φ〉)
)

= τ ◦∑
h

Πe
α(Ph,e)⊗Πe

α(1,h)(|φ〉⊗ |φ〉)

= τ ◦∑
h

δe,h ⊗Πe
α(1,h)(|φ〉⊗ |φ〉)

= τ ◦1⊗Πe
α(1,e)(|φ〉⊗ |φ〉)

= τ(|φ〉⊗ |φ〉) = |φ〉⊗ |φ〉 (4.9)

Furthermore, all electric condensates have trivial spin factor (exp(ı2πs) with s = 1), as
α(e) = 1 because it is a group representation. Therefore all irreducible representations
are allowed candidates for condensates.

Residual symmetry algebra Choose a vector |φ〉 ∈ V A
α . We determine T|φ〉 by

proposition 3.2. The irreducible representations of D(Dn)
∗ are just the tensor prod-

uct of the irreducible representations of CDn and those of F(Dn), which we label by
ρi ⊗Eg (cf. (3.5)) or (ρi,Eg). They must satisfy (3.8), in this case

Πe
α(1,g−1)|φ〉 =

χρi
(e)

dρi

|φ〉 (4.10)

Now χρi
(e) = dρi

∀i, because it is a group character. There is no restriction on ρi, so
the magnetic part of D(Dn) is unbroken.
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Since the centralizer of e is all of Dn, Πe
α(1,g) is just the group action of g on |φ〉.

We see that this equation is satisfied for all g for which α(g−1) = 1. These elements
constitute a subgroup of Dn, which is called the stabilizer N|φ〉 of |φ〉.

Therefore we find
T|φ〉 ' F(Dn) ⊗̃CN|φ〉. (4.11)

We have the following choices for α: J1, J2, J3, α j. For the one-dimensional rep-
resentations Ji, we have no choice (up to a scalar factor) for the state |φ〉, and the
stabilizer is just the set of elements g for which Ji(g) = 1. From the defintions (4.4),
we see that NJ1

= 〈r〉 ' Zn, the subgroup generated by r; NJ2
= 〈r2〉 ∪ s〈r2〉 ' Dn/2;

NJ3
= 〈r2〉∪ sr〈r2〉 ' Dn/2.
For α j, the stabilizer may depend upon |φ〉. We write out the action of the elements

rk.

α j(r
k)

(
λ1
λ2

)

=

(
q jk 0
0 q− jk

)(
λ1
λ2

)

=

(
q jkλ1

q− jkλ2

)

. (4.12)

This can only be satisfied by elements rk for which q jk = 1 ∧ q− jk = 1, which is
equivalent to the demand q jk = 1 ⇒ jk = 0 mod n. The smallest k to satisfy this
demand is k = n

gcd(n, j) , where gcd denotes the greatest common divisor of two in-
tegers. All multiples of this k will also satisfy the demand, so we have a group
{e,rx,r2x, . . . ,rgcd(n, j)} ' Zgcd(n, j), where x ≡ n

gcd(n, j) .
This result does not depend upon the particular state |φ〉. But let’s now look at the

representation values of the elements srk:

α j(srk)

(
λ1
λ2

)

=

(
0 q− jk

q jk 0

)(
λ1
λ2

)

=

(
q− jkλ2
q jkλ1

)

. (4.13)

We already demanded that q jk = q− jk = 1, but the vector can only be invariant under
this action when λ1 = λ2. If this is the case, then all elements of the form srmx, with m
an integer and x as above, are also in the stabilizer of |φ〉, which is then isomorphic to
Dgcd(n, j).

Thus we see that the residual algebra T|φ〉 is either of the form F(Dn) ⊗̃CZgcd(n, j)

or of the form F(Dn) ⊗̃CDgcd(n, j), the latter case arises when |φ〉 is of the form (λ λ )T

for some λ ∈ C.

Particles in the condensates The residual symmetry algebra T|φ〉 is of the form
F(Dn/K) ⊗̃CN, with K = {e} and N = N|φ〉. Then the irreducible representations of
F(Dn) ⊗̃CN|φ〉 are labelled by orbits B of Dn of the N-action and irreducible represen-
tations β of the stabilizer of a distinguished element of that orbit, where the stabilizer
should now be a subgroup of N|φ〉.

We denote these particles by ΩB
β .

Confinement for electric condensates We examine which of these representations
ΩB

β are not confined. Such particles should satisfy the conditions of proposition 3.5.
Because the distinguished element of Πe

α is e, (3.28) is always satisfied. Because the
magnetic part is unbroken K = {e}, and (3.27) reduces to

ΠA
α(1,η)|φ〉 = |φ〉 ∀η ∈ B. (4.14)
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This amounts to α(η) = 1 ∀η ∈ B. This holds when all elements of B are contained
in the stabilizer N|φ〉, so when B is a subgroup of N|φ〉. In §3.3.3 we mentioned that
all elements of the algebra D

(
N|φ〉/(K ∩N|φ〉)

)
satisfy said conditions, and we showed

here that there are no others.
We have found

U|φ〉 ' D(N|φ〉). (4.15)

The representations of T|φ〉 for which the orbit B is contained in the stabilizer N|φ〉 are
unconfined, and are the irreducible representations of U|φ〉 as well; the other represen-
tations are confined.

Domain walls The confined particles give rise to domain walls as in §3.3.4. They
are given by the irreducible representations of the left or right Hopf kernel of the map
Γ : T → U . From (3.36) we see that the right Hopf kernel is isomorphic to

RKer(Γ) ' F((H/K)/(N/N ∩K))⊗C(N ∩K) = F(Dn/N|φ〉)⊗Ce. (4.16)

The walls are therefore classified by functions on the N|φ〉-cosets. The irreducible rep-
resentations are labelled by these cosets, and given by

EhN
|φ〉

( f ,e) = f (h). (4.17)

There are |Dn|/|N|φ〉| distinguishable domain walls, which are all one-dimensional; this
is obvious, as F(Dn/N|φ〉)⊗Ce is Abelian.

Each particle ΩB
β restricts to a domain wall, and all unconfined particles restrict to

the trivial element h = e. Let’s calculate the representation values of ΩB
β on the Hopf

kernel F(Dn/N|φ〉)⊗Ce:

ΩB
β ( f ,e)|bpw j〉 = f (bp)|bpw j〉. (4.18)

Comparing this with (4.17), we see that each basis vector |bpw j〉 corresponds to one
representation of the coset bpN|φ〉. So for each bp ∈ B, there are dβ copies of the
representation EbpN

|φ〉
. Some of these cosets may coincide. We also see that when

B ⊂ N|φ〉, this representation does indeed restrict only to copies of EeN
|φ〉

, all other ΩB
β

are confined.

4.2.1 Particles in the J1-condensate
For |φ〉 ∈ V e

J1
, the stabilizer N|φ〉 is the subgroup of Dn generated by r. The residual

symmetry algebra is T|φ〉 = F(Dn) ⊗̃CZn. The orbits of Dn by the action of N|φ〉 are

[rk] = {rk}; [s] = {s,sr2, . . . ,srn−2}; [sr] = {sr,sr3, . . . ,srn−1}; k = 0, . . . ,n−1.
(4.19)

The stabilizers in N|φ〉 of (distinguished elements) of these orbits are

Nrk = Zn; Ns = {e,rn/2} ' Z2; Nsr = {e,rn/2}. (4.20)

The particles in this condensate are then labelled by (dimensions within parentheses).

Ωrk

βl
(1), Ωs

γ0,1
( n

2 ), Ωsr
γ0,1

( n
2 ). k, l = 0, . . . ,n−1 (4.21)
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Here γ0,1 denote the two irreducible Z2-representations.
We can determine the branching rules for the decomposition of irreducible D(Dn)-

representations as T -representation into irreducible T -representation by using the
characters (see §3.2.4). We then find

Πe
J0,1

' Ωe
β0

Πe
J2,3

' Ωe
βn/2

Πe
α j

' Ωe
β j
⊕Ωe

β− j
(4.22)

Πrn/2

J′0,1
' Ωrn/2

β0
Πrn/2

J′2,3
' Ωrn/2

βn/2
Πrn/2

α ′
j
' Ωrn/2

β j
⊕Ωrn/2

β− j
(4.23)

Πrk

βl
' Ωrk

βl
⊕Ωr−k

β−l
(4.24)

Πs
J0,2

' Ωs
γ0

Πs
J1,3

' Ωs
γ1

(4.25)

Πsr
J0,2

' Ωsr
γ0

Πsr
J1,3

' Ωsr
γ1

. (4.26)

We have included one calculation, the branching of Πrk

βl
in the appendix §A.4.2, to

show how this works. We will state only the results of such calculations throughout
this chapter.

The particles ΩB
β which are unconfined have an orbit B that lies within the stabi-

lizer N|φ〉 = 〈r〉 ' Zn. The domain walls are characterized by the Hopf kernel algebra
F(Z2)⊗Ce, and its irreducible representations are labelled by the cosets of N|φ〉 in Dn,
of which there are two, represented by e and s.

Then the particles Ωrk

βl
are unconfined, and are representations of U|φ〉 ' D(Zn).

They branch to Ee. The representations Ωs,sr
γ0,1

are confined, and must necessarily branch
to Es.

4.2.2 Particles in the J2-condensate

For |φ〉 ∈ V e
J2

, the stabilizer N|φ〉 is the subgroup of Dn given by {sqr2p|q = 0,1; p =

0, . . . , n
2 − 1} ' Dn/2. The residual symmetry algebra is T|φ〉 = F(Dn) ⊗̃CDn/2. We

now have to distinguish between the cases n/2 even or odd. If n/2 odd, the stabilizer
is not a group of the form described in §4.1, but rather an odd dihedral group given in
§A.4.1.

Case n/2 even The stabilizer N|φ〉 is isomorphic to an even dihedral group, and now

the elements srk of Dn will split up into three orbits, because the action of r2k ∈ Dn/2

on s ∈ Dn now only reaches the elements {s,sr4, . . . ,sr−4}, because n mod 4 = 0. From
sr, however, the elements sr−1+4k can be reached, by the action the elements sr2k. We
therefore have the orbits

[e] = {e}; [rn/2] = {rn/2}; [rk] = {rk,r−k}; k = 1, . . . ,
n
2
−1.

[s] = {s,sr4, . . . ,srn−4}; [sr2] = {sr2,sr6, . . . ,srn−2};

[sr] = {sr,sr3, . . . ,srn−1}. (4.27)

The stabilizers of these orbits in N|φ〉 are

Ne = Dn/2; N
rn/2 = Dn/2; Nrk = 〈r2〉 ' Zn/2;

Nsr2k = {e,rn/2,sr2k,sr2k+n/2} ' D2; Nsr = {e,rn/2} ' Z2. (4.28)
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The particles in this condensate are then labelled by (dimensions within parentheses).

Ωe
Ji
(1), Ωe

α j
(2), Ωrn/2

Ji
(1), Ωrn/2

α j
(2), i = 0,1,2,3; j = 1, . . . , n

4 −1,

Ωrk

βl
(2), Ωs,sr2

Ji
,( n

4 ) Ωsr
γ0,1

( n
2 ), k = 1, . . . , n

2 −1; l = 0, . . . , n
2 −1. (4.29)

Now we determine the branching rules from D(Dn) to T|φ〉. In making the cal-
culation, we have to be very careful to apply the right reprensentation. For example,
Πe

J2
(r2) = 1, but Ωe

J2
(r2) = −1.

Πe
J0,2

' Ωe
J0

Πe
J1,3

' Ωe
J1

(4.30)

Πe
α j

' Ωe
α j

, j < n
4 Πe

α j
' Ωe

α− j
, j > n

4 Πe
αn/4

' Ωe
J2
⊕Ωe

J3
(4.31)

Πrn/2

J0,2
' Ωrn/2

J0
Πrn/2

J1,3
' Ωrn/2

J1
(4.32)

Πrn/2

α j
' Ωrn/2

α j
, j < n

4 Πrn/2

α j
' Ωrn/2

α− j
, j > n

4 Πrn/2

αn/4
' Ωrn/2

J2
⊕Ωrn/2

J3
(4.33)

Πrk

βl
' Ωrk

βl
, l < n

2 Πrk

βl
' Ωrk

βl−n/2
, l >= n

2 (4.34)

Πs
Ji
' Ωs

Ji
⊕Ωsr2

Ji
Πsr

J0,1
' Ωsr

γ0
Πsr

J2,3
' Ωsr

γ1
(4.35)

The unconfined algebra is isomorphic to D(Dn/2). The particles ΩB
β which are un-

confined have an orbit B that lies within the stabilizer N|φ〉 ' D(Dn/2). The domain
walls are characterized by the Hopf kernel algebra F(Z2)⊗Ce, and its irreducible rep-
resentations are labelled by the cosets of N|φ〉 in Dn, of which there are two, represented
by e and r.

The particles which are unconfined are

Ωe,rn/2

Ji
, Ωe,rn/2

α j
, Ωr2k

βl
, Ωs,sr2

Ji
i = 0,1,2,3; j,k = 1, . . . , n

4 −1; l = 0, . . . , n
2 −1.

(4.36)
One can check that the squares of the dimensions of these representations add up to
n2 = dimD(Dn/2). These representations restrict to the trivial wall Ee, all others are
confined and restrict to Er.

Case n/2 odd When n/2 is odd, the stabilizer N|φ〉 has the structure of an odd dihedral

group, described in §A.4.1. In particular, there no longer is a non-trivial element rn/4

in N|φ〉.
The action of the element r2 ∈ N|φ〉 on s ∈ Dn still yields sr4, but because n/2 is

odd, rn/2+1 ∈ N|φ〉, and r−n/2−1srn/2+1 = sr2. Therefore the N|φ〉-orbits in Dn are

[e] = {e}; [rn/2] = {rn/2}; [rk] = {rk,r−k}; k = 1, . . . ,
n
2
−1.

[s] = {s,sr2, . . . ,srn−2}; [sr] = {sr,sr3, . . . ,srn−1}. (4.37)

The stabilizers in N|φ〉 of these orbits are

Ne = Dn/2; N
rn/2 = Dn/2; Nrk = 〈r2〉 ' Zn/2;

Ns = {e,s} ' Z2; Nsr = {e,sr1+n/2} ' Z2. (4.38)
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The particles in this condensate are then given by (dimensions within parentheses).

Ωe
Ji
(1), Ωe

α j
(2), Ωrn/2

Ji
(1), Ωrn/2

α j
(2), i = 0,1; j = 1, . . . , n/2−1

2 ,

Ωrk

βl
(2), Ωs,sr

γ0,1
( n

2 ), k = 1, . . . , n
2 −1; l = 0, . . . , n

2 −1. (4.39)

The branching rules from D(Dn) to T|φ〉 are given by

Πe,rn/2

J0,2
' Ωe,rn/2

J0
Πe,rn/2

J1,3
' Ωe,rn/2

J1

Πe,rn/2

α j
' Ωe,rn/2

α j
, j < n

4 Πe,rn/2

α j
' Ωe,rn/2

α− j
, j > n

4

Πrk

βl
' Ωrk

βl
, l < n

2 Πrk

βl
' Ωrk

βl−n/2
, l >= n

2

Πs
J0,2

' Ωs
γ0

Πs
J1,3

' Ωs
γ1

Πsr
J0,3

' Ωsr
γ0

Πsr
J1,2

' Ωsr
γ1

. (4.40)

Particles ΩB
β of which the orbit B is not contained in the stabilizer N|φ〉 are confined.

The unconfined algebra U is again isomorphic to D(Dn/2), and the Hopf kernel of Γ is
F(Z2)⊗Ce, with irreducible representations Ee and Er. The unconfined particles are

Ωe
J0,1

, Ωe
α j

, Ωr2k

βl
, Ωs

γ0,1
j,k = 1, . . . , n

4 −
1
2 ; l = 0, . . . , n

2 −1. (4.41)

4.2.3 Particles in the J3-condensate

For |φ〉 ∈V e
J3

, the stabilizer N|φ〉 is the subgroup of Dn given by {(sr)qr2p|q = 0,1; p =

0, . . . , n
2 − 1} ' Dn/2. The residual symmetry algebra is T|φ〉 = F(Dn) ⊗̃CDn/2. The

calculations are all very similar to those for |φ〉 ∈ V e
J2

. We again have to distinguish
between the cases n/2 even or odd.

Case n/2 even The stabilizer N|φ〉 is isomorphic to an even dihedral group; the orbits
are now

[e] = {e}; [rn/2] = {rn/2}; [rk] = {rk,r−k}; k = 1, . . . ,
n
2
−1.

[sr] = {sr,sr5, . . . ,srn−3}; [sr3] = {sr3,sr7, . . . ,srn−1};

[s] = {s,sr2, . . . ,srn−2}. (4.42)

The stabilizers of these orbits in N|φ〉 are

Ne = Dn/2; N
rn/2 = Dn/2; Nrk = 〈r2〉 ' Zn/2;

Nsr2k+1 = {e,rn/2,sr2k+1,sr2k+1+n/2} ' D2; Ns = {e,rn/2} ' Z2. (4.43)

The particles in this condensate are then labelled by (dimensions within parentheses).

Ωe
Ji
(1), Ωe

α j
(2), Ωrn/2

Ji
(1), Ωrn/2

α j
(2), i = 0,1,2,3; j = 1, . . . , n

4 −1,

Ωrk

βl
(2), Ωsr,sr3

Ji
( n

4 ), Ωs
γ0,1

( n
2 ), k = 1, . . . , n

2 −1; l = 0, . . . , n
2 −1. (4.44)
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The branching rules are similar to those for |φ〉 ∈V e
J2

. To see that the restriction of
Πe

α j
, j < n

4 is equivalent to Ωe
α j

, one should check that

(
1

q− j
n

)(
q− j(2p+1)

n
q j(2p+1)

n

)(
1

q j
n

)

=

(
q−2 jp

n
q2 jp

n

)

=

(
q− jp

n/2
q jp

n/2
,

)

(4.45)
where qn ≡ eı 2π

n and qn/2 ≡ eı 2π
n/2 , so that the values on sr2p+1, p ∈ Z of Πe

α j
and Ωe

α j

are related by this similarity transformation (cf. §5.1.2).

Πe
J0,3

' Ωe
J0

Πe
J1,2

' Ωe
J1

(4.46)

Πe
α j

' Ωe
α j

, j < n
4 Πe

α j
' Ωe

α− j
, j > n

4 Πe
αn/4

' Ωe
J2
⊕Ωe

J3
(4.47)

Πrn/2

J0,3
' Ωrn/2

J0
Πrn/2

J1,2
' Ωrn/2

J1
(4.48)

Πrn/2

α j
' Ωrn/2

α j
j < n

4 Πrn/2

α j
' Ωrn/2

α− j
, j > n

4 Πrn/2

αn/4
' Ωrn/2

J2
⊕Ωrn/2

J3
(4.49)

Πrk

βl
' Ωrk

βl
, l < n

2 Πrk

βl
' Ωrk

βl−n/2
, l >= n

2 (4.50)

Πs
J0,1

' Ωs
γ0

Πs
J2,3

' Ωs
γ1

Πsr
Ji
' Ωsr

Ji
⊕Ωsr3

Ji
(4.51)

The unconfined algebra is isomorphic to D(Dn/2). The domain walls are charac-
terized by the Hopf kernel algebra F(Z2)⊗Ce, and its irreducible representations are
labelled by the cosets of N|φ〉 in Dn, of which there are two, represented by e and r.

The particles which are unconfined are

Ωe,rn/2

Ji
, Ωe,rn/2

α j
, Ωr2k

βl
, Ωsr,sr3

Ji
i = 0,1,2,3; j,k = 1, . . . , n

4 −1; l = 0, . . . , n
2 −1.

(4.52)
These representations restrict to the trivial wall Ee, all others are confined and restrict
to Er.

Case n/2 odd When n/2 is odd, the stabilizer N|φ〉 has the structure of an odd dihedral

group, described in §A.4.1. In particular, there no longer is a non-trivial element rn/4

in N|φ〉.
The action of the element r2 ∈ N|φ〉 on s ∈ Dn still yields sr4, but because n/2 is

odd, rn/2+1 ∈ N|φ〉, and r−n/2−1srn/2+1 = sr2. Therefore the N|φ〉-orbits in Dn are

[e] = {e}; [rn/2] = {rn/2}; [rk] = {rk,r−k}; k = 1, . . . ,
n
2
−1.

[s] = {s,sr2, . . . ,srn−2}; [sr] = {sr,sr3, . . . ,srn−1}. (4.53)

The stabilizers in N|φ〉 of these orbits are

Ne = Dn/2; N
rn/2 = Dn/2; Nrk = 〈r2〉 ' Zn/2;

Ns = {e,srn/2} ' Z2; Nsr = {e,sr} ' Z2. (4.54)

The particles in this condensate are then given by (dimensions within parentheses).

Ωe
Ji
(1), Ωe

α j
(2), Ωrn/2

Ji
(1), Ωrn/2

α j
(2), i = 0,1; j = 1, . . . , n/2−1

2 ,

Ωrk

βl
(2), Ωs,sr

γ0,1
( n

2 ), k = 1, . . . , n
2 −1; l = 0, . . . , n

2 −1. (4.55)
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The branching rules from D(Dn) to T|φ〉 are given by

Πe,rn/2

J0,3
' Ωe,rn/2

J0
Πe,rn/2

J1,2
' Ωe,rn/2

J1

Πe,rn/2

α j
' Ωe,rn/2

α j
, j < n

4 Πe,rn/2

α j
' Ωe,rn/2

α− j
, j > n

4

Πrk

βl
' Ωrk

βl
, l < n

2 Πrk

βl
' Ωrk

βl−n/2
, l >= n

2

Πs
J0,3

' Ωs
γ0

Πs
J1,2

' Ωs
γ1

Πsr
J0,2

' Ωsr
γ0

Πsr
J1,3

' Ωsr
γ1

. (4.56)

The unconfined algebra is U ' D(Dn/2), and RKer(Γ) ' F(Z2)⊗Ce. The following
particles are unconfined:

Ωe
J0,1

, Ωe
α j

, Ωr2k

βl
, Ωsr

γ0,1
j,k = 1, . . . , n

4 −
1
2 ; l = 0, . . . , n

2 −1. (4.57)

4.2.4 Particles in α j-condensates

Take |φ〉 ∈ V e
α j

, which is two-dimensional. Condition (3.8) gives no restriction on the
ρ-part of the matrix elements (ρab,Eg) of representations of D(D4)

∗, and boils down
to

α j(s
qrp)|φ〉 = |φ〉. (4.58)

When q = 0, so for elements Erp this is equivalent to

α j(r
p) =

(
q jp

q− jp

)

=

(
1

1

)

. (4.59)

The smallest p that satisfies this equation is p = x ≡ n
gcd(n, j) , and the subgroup 〈rx〉 '

Zgcd(n, j) leaves any |φ〉 invariant.
For elements Esrp , the condition becomes

α j(srp)

(
λ1
λ2

)

=

(
q− jp

q jp

)(
λ1
λ2

)

=

(
q− jpλ2
q jpλ1

)

=

(
λ1
λ2

)

. (4.60)

For the element Es, so when p = 0, we see that this condition is satisfied only for |φ〉
for which λ2 = λ1. Because α j is a representation, all elements s〈rx〉 will also leave
this |φ〉 invariant, and it is not hard to see that no other srp have this property. We find
that for this state vector, the stabilizer N|φ〉 is isomorphic to Dgcd(n, j).

Alternatively, we could have λ2 = q jyλ1, for some y so that jy ∈ {1, . . . ,x− 1}.
In that case the elements sry〈rx〉 leave the condensate invariant, but the stabilizer will
still be isomorphic to Dgcd(n, j). It is only of importance in which of the two classes [s]
or [sr] the element sry lies, since we can always perform some gauge transformation
which carries sry over to the distinguished element, s or sr, of that class (this gauge
transformation corresponds to a change of coordinates so that the values λ1,2 change in
a way that leads to an invariant action of the distinguished element).

We treat the cases of these different stabilizers separately.
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Case N|φ〉 ' Zgcd(n, j) The residual symmetry algebra T ' F(Dn) ⊗̃CZgcd(n, j) has
dimension 2n.gcd(n, j). The irreducible representations ΩB

β are given by orbits B in Dn

and stabilizers in CZgcd(n, j) of distinguished elements in these orbits.

The action of rzx, z ∈ 0, . . . ,gcd(n, j)− 1 on an element rk yields only rk, which
therefore constitutes an entire orbit. Its stablizer is the entire group Zgcd(n, j).

The action of rzx on srk gives srk+2zx. If j is even then gcd(n, j) is also even because
n is even, and gcd(n, j)/2 ∈ {0, . . . ,gcd(n, j)}. The action of all rzx then gives us
two times every element of srk〈r2x〉, and there are 2x orbits labelled by [srk], k =
0, . . . ,2x − 1, the stabilizer of each of which is {e,rn/2} as rn/2 ∈ Zgcd(n, j) because
gcd(n, j) is even.

If j is odd then gcd(n, j) is odd, so gcd(n, j)/2+ 1
2 ∈ {0, . . . ,gcd(n, j)}, and the ac-

tion of r(gcd(n, j)/2+
1
2 )x on srk gives srk+x. The orbits are [srk] = srk〈rx〉, k = 0, . . . ,x−

1, with stabilizer just {e}, as rn/2 /∈ Zgcd(n, j).
The irreducible representations of T are:

Ωrk

βl
(1), k = 0, . . . ,n−1, l = 0, . . . ,gcd(n, j)−1

{

Ωsrk
γ0,1

( gcd(n, j)
2 )

Ωsrk
γ0

(gcd(n, j))
k = 0, . . . ,2x−1, j even
k = 0, . . . , x−1, j odd (4.61)

In both cases, the dimensions correctly add up to 2n.gcd(n, j). The branching rules of
irreducible D(Dn)-representations are not hard to calculate:

Πe
J0,1

' Ωe
β0

Πe
J2,3

' Ωe
β0

(x even) Πe
J2,3

' Ωe
βgcd(n, j)/2

(x odd)

Πrn/2

J0,1
' Ωrn/2

β0
Πrn/2

J2,3
' Ωrn/2

β0
(x even) Πrn/2

J2,3
' Ωrn/2

βgcd(n, j)/2
(x odd)

Πe
α j

' Ωe
β j mod gcd(n, j)

⊕Ωe
β
− j mod gcd(n. j)

Πrn/2
α j

' Ωrn/2

β j mod gcd(n, j)
⊕Ωrn/2

β
− j mod gcd(n. j)

Πrk

βl
' Ωrk

βl mod gcd(n, j)
⊕Ωr−k

βl mod gcd(n, j)

Πs
J0,1

' Ωs
γ0
⊕Ωsr2

γ0
⊕ . . .⊕Ωsr2x−2

γ0

Πs
J2,3

' Ωs
γ1
⊕Ωsr2

γ1
⊕ . . .⊕Ωsr2x−2

γ1

Πsr
J0,1

' Ωsr
γ0
⊕Ωsr3

γ0
⊕ . . .⊕Ωsr2x−1

γ0

Πsr
J2,3

' Ωsr
γ1
⊕Ωsr3

γ1
⊕ . . .⊕Ωsr2x−1

γ1







j even

Πs
Ji

' Ωs
γ0
⊕Ωsr2

γ0
⊕ . . .⊕Ωsrx−2

γ0

Πsr
Ji

' Ωsr
γ0
⊕Ωsr3

γ0
⊕ . . .⊕Ωsrx−1

γ0

}

j odd

(4.62)

The particles of which the orbit B is contained within the stabilizer N|φ〉 = 〈rx〉 are

unconfined, which leaves only Ωrzx

βl
, z, l = 0, . . . ,gcd(n, j)−1, and U ' D(Zgcd(n, j)).

From (4.16) the Hopf kernel is F(Dn/Zgcd(n, j))⊗Ce ' F(Dx)⊗Ce. The restriction of
T -representations is:

Ωrk

βl
' Erk mod x , Ωsrk

γ0,1
' Esrk mod x . (4.63)

Here the index k runs over all valid values according to (4.61), and we see that indeed
only the representations Ωrzx

βl
restrict to Ee and are (therefore) unconfined.
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Case N|φ〉 ' Dgcd(n, j) The residual symmetry algebra T ' F(Dn) ⊗̃CDgcd(n, j) is
2n.2gcd(n, j)-dimensional. As mentioned above, we only have to consider the cases
N|φ〉 = 〈rx〉∪ s〈rx〉 and N|φ〉 = 〈rx〉∪ sr〈rx〉. We will denote these two cases by Ds

gcd(n, j)
and Dsr

gcd(n, j).

We determine the Dgcd(n, j)-orbits in F(Dn). Analogous to the case of N|φ〉 '

Zgcd(n, j), we have to distinguish between j even and odd: when j is odd, then gcd(n, j)
is odd and x is even; when j is even, then gcd(n, j) is even and x may be odd.

The orbit of rk now includes r−k. The stabilizer is 〈rx〉 ' Zgcd(n, j). The stabilizer

of e and rn/2 is the entire group N|φ〉 ' Dgcd(n, j).

For elements srk, the action of 〈rx〉 gives the set srk〈r2x〉, which reduces to srk〈rx〉
when j is odd. The action of s〈rx〉 on srk adds to this the elements sr−k〈r2x〉 (sr−k〈rx〉
when j is odd).

The sets srk〈r2x〉 and sr−k〈r2x〉 coincide when k = 0 or k = x. The sets srk〈rx〉
and sr−k〈rx〉 coincide when k = 0 or k = x

2 . This leads to the orbits [s] and [srx]

(resp. [srx/2]) of gcd(n, j)
2 (resp. gcd(n, j)) elements and the orbits [srk], k = 1, . . . ,x−

1 (resp. x
2 −1) of gcd(n, j) (resp. 2gcd(n, j)) elements.

When j is even, gcd(n, j) is even and rn/2 ∈ N|φ〉. Therefore the stabilizer of s is

{e,rn/2,s,srn/2}, and the stabilizer of srx is {e,rn/2,srx,srx+n/2}. For the other orbits
[srk], no element in s〈rx〉 leaves the distinguished elements invariant, and the stabilizers
are {e,rn/2}.

When j is odd, gcd(n, j) is also odd and rn/2 /∈N|φ〉. The stabilizer of s is {e,s}. The

elements srx/2 is left invariant by srx/2+n/2, which is contained in N|φ〉 because x
2 + n

2 =

( 1
2 + gcd(n, j)

2 )x is a multiple of x. The stabilizer of srx/2 therefore is {e,srx/2+n/2}. The
stabilizers of the other orbits [srk] are just the trivial group.

When we are dealing with Dsr
gcd(n, j) these orbits ‘shift by r’: relabelling every orbit

by substituting srp 7→ srp+1 gives the correct results. In particular, the orbits [sr] and
(for j even) [srx+1] now have half as much elements as the other orbits [srk] etc.

Summarizing, we have for j even

Ωe,rn/2

Ji
(1), Ωe,rn/2

α j
(2), i = 0,1,2,3, j = 1, . . . , gcd(n, j)

2 −1

Ωrk

βl
(2), k = 1, . . . , n

2 −1, l = 0, . . . ,gcd(n, j)−1

Ωs,srx

Ji

(
gcd(n, j)/2

)
, Ωsrk

γ0,1

(
gcd(n, j)

)
i = 0,1,2,3, k = 1, . . . ,x−1 (4.64)

and for j odd

Ωe,rn/2

J0,1
(1), Ωe,rn/2

α j
(2), j = 1, . . . , gcd(n, j)−1

2

Ωrk

βl
(2), k = 1, . . . , n

2 −1, l = 0, . . . ,gcd(n, j)−1

Ωs,srx/2

γ0,1

(
gcd(n, j)

)
, Ωsrk(

2gcd(n, j)
)

k = 1, . . . , x
2 −1 (4.65)

The branching rules give the isomorphisms between restrictions of irreducible D(Dn)-
representations and irreducible T -representations:
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For j even:

Πe,rn/2

J0,2
' Ωe,rn/2

J0
, Πe,rn/2

J1,3
' Ωe,rn/2

J1
,

Πe,rn/2

α j
'







Ωe,rn/2

α j mod gcd(n, j)
1 < j mod gcd(n, j) < gcd(n, j)

2

Ωe,rn/2

J2
⊕Ωe,rn/2

J3
j = gcd(n, j)

2 mod gcd(n, j)

Ωe,rn/2

α
− j mod gcd(n, j)

gcd(n, j)
2 < j mod gcd(n, j) < gcd(n, j)

Ωe,rn/2

J0
⊕Ωe,rn/2

J1
j = 0 mod gcd(n, j)

Πrk

βl
' Ωrk

βl mod gcd(n, j)
, k = 1, . . . , n

2 −1

Πs
J0,1

'







Ωs
J0,1

⊕Ωsrx

J0,1

⊕

k even Ωsrk
γ0

x even

Ωs
J0,1

⊕

k even Ωsrk
γ0

x odd

Πs
J2,3

'







Ωs
J2,3

⊕Ωsrx

J2,3

⊕

k even Ωsrk
γ1

x even

Ωs
J2,3

⊕

k even Ωsrk
γ1

x odd

Πsr
J0,1

'

{

Ωsrx

J0,1

⊕

k odd Ωsrk
γ0

x odd
⊕

k odd Ωsrk
γ0

x even

Πsr
J2,3

'

{

Ωsrx

J2,3

⊕

k odd Ωsrk
γ1

x odd
⊕

k odd Ωsrk
γ1

x even
(4.66)

For j odd:

Πe,rn/2

J0,2
' Ωe,rn/2

J0
, Πe,rn/2

J1,3
' Ωe,rn/2

J1
,

Πe,rn/2

α j
'







Ωe,rn/2

α j mod gcd(n, j)
1 < j mod gcd(n, j) < gcd(n, j)

2

Ωe,rn/2

α
− j mod gcd(n, j)

gcd(n, j)
2 < j mod gcd(n, j) < gcd(n, j)

Πrk

βl
' Ωrk

βl mod gcd(n, j)
, k = 1, . . . , n−1

2

Πs
J0,2

'

{

Ωs
γ0
⊕Ωsrx

γ0

⊕

k even Ωsrk
x even

Ωs
γ0

⊕

k even Ωsrk
x odd

Πs
J1,3

'

{

Ωs
γ1
⊕Ωsrx

γ1

⊕

k even Ωsrk
x even

Ωs
γ1

⊕

k even Ωsrk
x odd

Πsr
J0,3

'

{

Ωsrx/2
γ0

⊕

k odd Ωsrk x
2 odd

⊕

k odd Ωsrk x
2 even

Πsr
J1,2

'

{

Ωsrx/2
γ1

⊕

k odd Ωsrk x
2 odd

⊕

k odd Ωsrk x
2 even

(4.67)

When we have N|φ〉 ' Dsr
gcd(n, j) instead of Ds

gcd(n, j), the branching rules of Πs
Ji

and Πsr
Ji

are ‘reversed’; for example Πsr
J1
' Ωsr

γ1

⊕

k odd Ωsrk
for j odd and x

2 even.

The representations carrying flux contained in N|φ〉 are unconfined, which are Ωrzx

and Ωs,srx
for j even and Ωrzx

, and Ωs for j odd. Note that Ωrn/2
is only unconfined
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when j is even. The unconfined algebra is U ' D(Dgcd(n, j)) and the Hopf kernel is
RKer(Γ) ' F(Zgcd(n, j))⊗Ce with irreducible representations Erk , k = 0, . . . ,x−1.

The restriction of irreducible T -representations to RKer(Γ) gives

Ωrk

β ' Erk mod x , Ωsrk

β ' Er−k mod x . (4.68)

This concludes the treatment of electric condensates in D(Dn)-theories.

4.3 Gauge-invariant magnetic condensates
Now we turn to representations carrying flux but trivial electric charge, denoted by
ΠA

1 with A 6= [e]. We call these magnetic representations, and we are interested in the
formation of condensates in this sector.

Trivial self-braiding Let us first look under which circumstances we have conden-
sate particles which braid trivially amongst themselves. The general form (2.8) of the
vector |φ〉 reduces to ∑ j∈A λ j|a j〉, because the electric part of the representation space
is trivial. We then find

τ ◦ (ΠA
1 ⊗ΠA

1 )(R)(|φ〉⊗ |φ〉) = τ ◦ (ΠA
1 ⊗ΠA

1 )
(

∑
h

(Ph,e)⊗ (1,h)
)
(|φ〉⊗ |φ〉)

= τ ◦∑
h

Π1
A(Ph,e)⊗Π1

A(1,h)(∑
j

λ j|a j〉⊗∑
j′

λ j′ |a j′〉)

= τ ◦∑
h

∑
j

δa j ,h
λ j|a j〉⊗∑

j′
λ j′ |ha j′h

−1〉

= τ ◦∑
j, j′

(λ j|a j〉⊗λ j′ |a ja j′a
−1
j 〉)

= ∑
j, j′

λ j′ |a ja j′a
−1
j 〉⊗λ j|a j〉. (4.69)

In order that this be equal to |φ〉⊗ |φ〉 = ∑ j, j′ λ j′ |a j′〉⊗∑ j λ j|a j〉, we must demand
that λa−1

j
λa

j′
λa j

= λa
j′

∀ j, j′. This holds for at least two general gauge orbits: the

gauge-invariant orbit where λ j = 1 ∀ j: ∑ j|a j〉, and the pure fluxes λ j = δ j, j′ for some
j′: |a j′〉. The rest of this section describes the gauge-invariant magnetic condensates,
in the next we look at condensates of pure flux. They may be other states that satisfy
the condition of trivial self-braiding, see e.g. §4.4.4.

The condition for a trivial spin factor is automatically satisfied for all magnetic
condensates.

Residual symmetry algebra The residual symmetry algebra T is spanned by matrix
elements of those irreducible representations of D(Dn)

∗ that satisfy (3.8), for our choice
of the condensate vector: |φ〉 = ∑ j∈A|a j〉. The demand

ΠA
1 (1,Eg−1)|φ〉⊗

χρ(a)

dρ
|φ〉 (4.70)

reduces to
χρ(a) = dρ ⇒ ρ(a) = 1, (4.71)
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because ∑ j|g
−1a jg〉 = ∑ j|a j〉.

Since ρ is a representation of Dn, any element a j in the class A will also have
ρ(a j) = 1, and furthermore the entire subgroup KA generated by elements of A has this
property. Because A is a conjugacy class, this subgroup is normal in Dn.

So we have a set of irreducible representations of which the value is trivial on
a normal subgroup KA. They are then equivalent to the irreducible representations
of the group with this normal subgroup divided out. The matrix elements of these
representations span the space F(Dn/KA). This can be seen as a subalgra of F(Dn) by
identifying the element Ph ∈ F(Dn/KA) (so hKA is a KA-coset in Dn) with ∑κ∈KA

Phκ ∈

F(Dn).
Because there was no restriction on the elements Eg, the residual symmetry algebra

is given by
T ' F(Dn/KA) ⊗̃CDn, (4.72)

which is of the form described in corollary 3.3. The particles in the condensate are
given by ΩB

β with B a Dn-orbit in Dn/KA and β an irreducible representation of the
stabilizer in Dn of the distinguished element of B.

The character (3.18) of such a representation is given by

χB
β (Ph,g) = 1Nh

(g)1B(h)χβ (k−1
h gkh), h ∈ Dn/KA, g ∈ Dn. (4.73)

The restriction of a D(Dn)-representation ΠA′

α has character

χA′

α |
T

(Ph,g) = ∑
κ∈KA

1Nhκ(g)1A′(hκ)χα(k−1
hκ gkhκ). (4.74)

We can calculate the branching of ΠA′

α into irreducible T -representations ΩB
β by using

the orthogonality relation (3.19). We see that we get non-zero values only when the
elements of the KA-cosets that constitute B comprise the elements of A′. Because KA
is normal in Dn and A′ is a conjugacy class, there is only one B that will satisfy this
condition.

Confinement The ΩB
β that satisfy (3.27) and (3.28) are unconfined. The first of these

relations is always satisfied because of the form of |φ〉. The second condition states
that β must be trivial on all of KA. As above, such representations are equivalent to
irreducible representations on the quotient group Dn/KA. The unconfined algebra is
therefore given by U ' D(Dn/KA).

One can now guess (correctly) that the domain walls should be characterized by
elements of KA. From (3.36) we find

RKer(Γ) = F
(
(Dn/KA)/(Dn/KA)

)
⊗̃C(Dn ∩KA) = F(e) ⊗̃C(KA). (4.75)

4.3.1 Particles in the gauge-invariant rn/2-condensate
The subgroup generated by rn/2 is {e,rn/2} ' Z2, so the residual symmetry algebra is
T ' F(Dn/〈rn/2〉) ⊗̃CDn ' F(Dn/2) ⊗̃CDn, which is 2n2-dimensional.

The algebra F(Dn/2) has the form of functions on a dihedral group, where this

group consists of {e,rn/2}-cosets. It is a subalgebra of F(Dn) by condidering the ele-
ment Pe ∈ F(Dn/2) as the element Pe +P

rn/2 ∈ F(Dn). Elements of the form Pg −P
grn/2

are projected onto 0 ∈ F(Dn/2).
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In order to determine the other properties of this symmetry breaking, we have to
distinguish between the cases where n

2 is even or odd.

Case n
2 even When rn/2 is even, the element rn/4 exists in F(Dn/2) and forms an

entire Dn-orbit, so its stabilizer is the full group Dn. The other orbits are [e], [rk] =
{rk,r−k}, [s] = {s,sr2, . . . ,sr

n
2−2} and [sr] = {sr,sr3, . . . ,sr

n
2−1}. The Dn-stabilizers of

[e] and [rk] are just Dn and 〈r〉 ' Zn, but the elements that leave srk ∈ Dn/2 invariant

are {e,rn/4,rn/2,r3n/4,srk,srk+n/4,srk+n/2,srk+3n/4} ' D4. We then find the following
irreducible representations for T (dimensions within parentheses):

Ωe,rn/4

Ji
(1), Ωe,rn/4

α j
(2), i = 0,1,2,3, j = 1, . . . , n

2 −1

Ωrk

βl
(2), k = 1, . . . , n

4 −1, l = 0, . . . ,n−1

Ωs,sr
Ji

( n
4 ), Ωs,sr

α ( n
2 ) i = 0,1,2,3. (4.76)

The squares of the dimensions correctly add up to 2n2.
We calculate the branching rules. The orbit B of the ΩB

β should contain the conju-
gacy class A of ΠA

α . The determination of β is sometimes a lot trickier. For example, the
representations Πrn/4

βl
are two-dimensional, because [rn/4] = {rn/4,r3n/4}; the Ωrn/4

Ji
are

one-dimensional. We therefore get a direct sum of two of those representations, which
should correspond properly to the action on the coset space represented by {e,s}.

Worse still, the orbit [s] of Πs
Ji

is twice as large as the orbit [s] of Ωs
α . However, the

D4-representation α is two-dimensional. We should find a basis of the representation
space of the restriction ΠA

α |T so that the action on the coset space corresponds to the
action of α for Ωs

α . An example of this is the branching of Πs
J2

, which is worked out in
the appendix, §A.4.2.

The branching rules are given by

Πe,rn/2

Ji
' Ωe

Ji
; Πe,rn/2

α j
' Ωe

α j

Πrn/4

βl
'







Ωrn/4

J0
⊕Ωrn/4

J1
l = 0

Ωrn/4

J2
⊕Ωrn/4

J3
l = n

2

Ωrn/4
αl

0 < l < n
2

Ωrn/4
α

l− n
2

n
2 < l < n

Πrk

βl
'







Ωrk

βl
0 < k < n

4

Ωr−k+n/2

βl

n
4 < k < n

2

Πs,sr
J0

' Ωs,sr
J0

⊕Ωs,sr
J2

Πs,sr
J1

' Ωs,sr
J1

⊕Ωs,sr
J3

Πs,sr
J2,3

' Ωs,sr
α (4.77)

In particular the purely magnetic particles Πs,sr
J0

may branch to dyonic particles in the
residual symmetry algebra, so the electric symmetry is then also broken. This will
happen often in magnetic and dyonic condensates, and forms an interesting feature in
these theories.
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The condensate particles ΩB
β for which β is trivial on the normal subgroup KA =

〈rn/2〉 are unconfined, and they are in one-to-one correpondence with irreducible rep-
resentations of U ' D(Dn/〈rn/2〉) ' D(Dn/2). This holds for the following represen-
ations:

Ωe,rn/4

Ji
, Ωe,rn/4

α2 j
, Ωrk

β2l
, Ωs,sr

Ji
. (4.78)

The sum of the squares of the dimensions adds up to 1
2 n2, which equals (dimDn/2)

2.
The Hopf kernel of the surjection from T onto U is isomorphic to just CKA '

C〈rn/2〉 ' CZ2, which has two irreducible representations. The unconfined particles
restrict to the trivial domain wall, the other particles to the other one.

Case n
2 odd When n

2 is odd, there is no element rn/4, and Dn/2 is an odd dihedral

group (§A.4.1). The Dn-orbits in Dn/2 are now [e], [rk] = {rk,r−k}, k = 1, . . . , n/2−1
2

and [s] = {s,sr, . . . ,srn/2−1}. The Dn-stabilizers are Dn for e, 〈r〉 ' Zn for rk and
{e,rn/2,srk,srk+n/2} ' D2 for srk. We find the find the following irreducible represen-
tations for the residual symmetry algebra T ' F(Dn/2) ⊗̃CDn/2:

Ωe
Ji
(1), Ωe

α j
(2), i = 0,1,2,3, j = 1, . . . , n

2 −1

Ωrk

βl
(2), k = 1, . . . , n/2−1

2 , l = 0, . . . ,n−1

Ωs
Ji
( n

2 ) i = 0,1,2,3. (4.79)

The squares of the dimensions correctly add up to 2n2.
The branching rules are given by

Πe,rn/2

Ji
' Ωe

Ji
; Πe,rn/2

α j
' Ωe

α j

Πrk

βl
'







Ωrk

βl
0 < k < n

4

Ωr−k+n/2

βl

n
4 < k < n

2

Πs,sr
Ji

' Ωs
Ji

(4.80)

The particles ΩB
β for which β is trivial on KA = {e,rn/2} are unconfined. This holds for

Ωe
J0,1

, Ωe
α2 j

,Ωrk

β2l
, Ωs

J0,1
, j,k = 1, . . . , n/2−1

2 , l = 0, . . . , n
2 . (4.81)

The unconfined algebra U ' D(Dn/2) is of dimension n2. The Hopf kernel is given by

CKA = C〈rn/2〉 ' CZ2. The unconfined particles restrict to the trivial representation
and the confined particles restrict to the non-trivial Z2-representation.

4.3.2 Particles in gauge-invariant rk-condensates
The orbit [rk] in Dn is {rk,r−k}, where k = 1, . . . , n

2 −1. The condition for the residual
symmetry algebra (4.71) states that the matrix elements of any D(Dn)

∗-representation
(ρ ,Eg) for which ρ(rk) = 1 leave the condensate invariant. J0,1 are always trivial on
rk, J2,3 when k is even, and α j(r

k) = 1 when j = zgcd(n,k), z ∈ N. It can be seen that
the residual symmetry algebra is then given by T = F(Dgcd(n,k)) ⊗̃CDn.
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This agrees with the general description F(Dn/K
[rk]

) ⊗̃CDn, because the smallest

subgroup of Dn which contains [rk] is 〈rgcd(n,k)〉 ' Zx where x ≡ n
gcd(n,k) , and Dn/Zx =

Dgcd(n,k).

The Dn-orbits in Dgcd(n,k) are the regular conjugacy classes for the (odd or even)

dihedral group. For example rp′ ⇀ srp = srp−2p′ mod gcd(n,k). The Dn-stabilizers for
[e], [rn/2] and [rk′ ] are just Dn,Dn and Zn, but the stabilizer of srk′ is now given by D2x =

〈rgcd(n,k)/2〉∪srk′〈rgcd(n,k)/2〉 when gcd(n,k) is even, and Dx = 〈rgcd(n,k)〉∪srk′〈rgcd(n,k)〉
when gcd(n,k) is odd.

Case gcd(n,k) even The irreducible representations of T are (dimensions within
parentheses):

Ωe,rgcd(n,k)/2

Ji
(1),Ωe,rgcd(n,k)/2

α j
(2) i = 0,1,2,3; j = 1, . . . , n

2 −1

Ωrk′

βl
(2) k′ = 1, . . . , gcd(n,k)

2 −1; l = 0, . . . ,n−1

Ωs,sr
Ji

( gcd(n,k)
2 ),Ωs,sr

α j

(
gcd(n,k)

)
i = 0,1,2,3; j = 1, . . . ,x−1 (4.82)

The squares of the dimensions correctly add up to 4ngcd(n,k).

To calculate the branching rules of ΠA
α , we know that we only have to consider those

ΩB
β for which A is completely contained in

⋃
bK

[rk]
, b ∈ B. Because gcd(n,k) is even,

Πrn/2
will always restrict to Ωe. Furthermore Πrk′

' Ωrk′ mod gcd(n,k)
, and Πs,sr ' Ωs,sr.
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Special care has to be taken when rk′ mod gcd(n, j) = rgcd(n,k)/2.

Πe
Ji
' Ωe

Ji
; Πe

α j
' Ωe

α j

Πrn/2

Ji
'

{
Ωe

Ji
x even

Ωrgcd(n,k)/2

Ji
x odd

Πrn/2

α j
'

{
Ωe

α j
x even

Ωrgcd(n,k)/2
α j

x odd

Πrk′

βl
'







Ωrgcd(n,k)/2

J0
⊕Ωrgcd(n,k)/2

J1
l = 0

Ωrgcd(n,k)/2

J2
⊕Ωrgcd(n,k)/2

J3
l = n

2

Ωrgcd(n,k)/2
αl

0 < l < n
2

Ωrgcd(n,k)/2
α

l− n
2

n
2 < l < n

k′ mod gcd(n,k) = gcd(n,k)
2

Πrk′

βl
'







Ωrk′ mod gcd(n,k)

βl
0 < k′ mod gcd(n,k) < gcd(n,k)

2

Ωr−k′ mod gcd(n,k)

βl

gcd(n,k)
2 < k′ mod gcd(n,k) < gcd(n,k)

Πs,sr
J0

'

{
Ωs,sr

J0
⊕Ωs,sr

J2

⊕

j even Ωs,sr
α j

x even

Ωs,sr
J0

⊕

j even Ωs,sr
α j

x odd

Πs,sr
J1

'

{
Ωs,sr

J1
⊕Ωs,sr

J3

⊕

j even Ωs,sr
α j

x even

Ωs,sr
J1

⊕

j even Ωs,sr
α j

x odd

Πs,sr
J2

'

{
Ωs,sr

J2

⊕

j odd Ωs,sr
α j

x odd
⊕

j odd Ωs,sr
α j

x even

Πs,sr
J3

'

{
Ωs,sr

J3

⊕

j odd Ωs,sr
α j

x odd
⊕

j odd Ωs,sr
α j

x even (4.83)

One may verify that the dimensions of the representations are the same on both sides.
We also see that this description just generalizes the case of |φ〉 ∈ V rn/2

J0
; this happens

because we divide out the entire subgroup KA, leading to the same expressions all
along.

The particles for which β is trivial on 〈rgcd(n,k)〉 are unconfined. This applies to

Ωe,rgcd(n,k)/2

Ji
, Ωe,rgcd(n,k)/2

αzx
, Ωrk′

β
z′x

, Ωs,sr
Ji

, z = 1, . . . , gcd(n,k)
2 −1; z′ = 0, . . . ,gcd(n,k)−1

(4.84)
The unconfined algebra is U ' D(Dn/K

[rk]
) ' D(Dgcd(n,k)). The Hopf kernel of the

map from T to U is C〈rk〉 ' CZx. Denote its irreducible representations by ρl , l =
0, . . . ,x−1. The restrictions of the ΩB

β to this Hopf kernel are given by

Ωe,rgcd(n,k)/2

Ji
' ρ0 Ωs,sr

Ji
' gcd(n,k)

2 ρ0

Ωe,rgcd(n,k)/2

α j
' ρ j mod x ⊕ρ− j mod x Ωs,sr

α j
' gcd(n,k)

2 ρ j mod x ⊕ρ− j mod x

Ωrk′

βl
' ρ j mod x ⊕ρ− j mod x (4.85)

and indeed the particles we claimed to be unconfined restrict to the trivial wall ρ0.
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Case gcd(n,k) odd In this case the left tensorand of T ' F(Dgcd(n,k)) ⊗̃CDn is the
function algebra of an odd dihedral group. Its Dn-orbits are the regular orbits for dihe-
dral groups: [e], [rk] = {rk,r−k} and [s] = {s, . . . ,srgcd(n,k)−1}, with Dn-stabilizers Dn,
Zn and 〈rgcd(n,k)〉∪ s〈rgcd(n,k)〉 ' Dx. Recall that when gcd(n,k) is odd, x = n

gcd(n,k) is

even, and therefore rn/2 ∈ 〈rgcd(n,k)〉.
The irreducible representations of T are (dimensions within parentheses):

Ωe
Ji
(1),Ωe

α j
(2) i = 0,1,2,3; j = 1, . . . , n

2 −1

Ωrk′

βl
(2) k′ = 1, . . . , gcd(n,k)−1

2 ; l = 0, . . . ,n−1

Ωs
Ji

(
gcd(n,k)

)
,Ωs

α j

(
2gcd(n,k)

)
i = 0,1,2,3; j = 1, . . . , x

2 −1 (4.86)

The branching rules of D(Dn)-representations as T -representations are

Πe,rn/2

Ji
' Ωe

Ji
; Πe,rn/2

α j
' Ωe

α j

Πrk′

βl
'







Ωrk′ mod gcd(n,k)

βl
0 < k′ mod gcd(n,k) < gcd(n,k)

2

Ωr−k′ mod gcd(n,k)

βl

gcd(n,k)
2 < k′ mod gcd(n,k) < gcd(n,k)

Πs,sr
J0

'

{

Ωs
J0
⊕Ωs

J2

⊕

j even Ωs
α j

x even
Ωs

J0

⊕

j even Ωs
α j

x odd

Πs,sr
J1

'

{

Ωs
J1
⊕Ωs

J3

⊕

j even Ωs
α j

x even
Ωs

J1

⊕

j even Ωs
α j

x odd

Πs,sr
J2

'

{

Ωs
J2

⊕

j odd Ωs
α j

x odd
⊕

j odd Ωs
α j

x even

Πs,sr
J3

'

{

Ωs
J3

⊕

j odd Ωs
α j

x odd
⊕

j odd Ωs
α j

x even (4.87)

The unconfined algebra U ' D(Dgcd(n, j)) has irreducible representations given by

those ΩB
β for which β (rzgcd(n,k)) = 1, ∀z ∈ Z. This holds for

Ωe
J0,1

, Ωrk′

βzx
, Ωs

J0,1
, z = 0, . . . ,gcd(n,k)−1 (4.88)

The restriction of irreducible T -representations to the Hopf kernel CK
[rk]

' Zx is sim-
ilar to the case gcd(n,k) even, but now x is certain to be even, and the several J2,3-
representations restrict to ρn/2.

Ωe
J0,1

' ρ0 Ωs
J0,1

' gcd(n,k)ρ0

Ωe
J2,3

' ρn/2 Ωs
J2,3

' gcd(n,k)ρn/2

Ωe
α j

' ρ j mod x ⊕ρ− j mod x Ωs
α j

' gcd(n,k)ρ j mod x ⊕ρ− j mod x

Ωrk′

βl
' ρ j mod x ⊕ρ− j mod x (4.89)

4.3.3 Particles in gauge-invariant s-condensates
The conjugacy class of s in Dn for n even is [s] = {s,sr2, . . . ,sr−2} (4.2). The smallest
(normal) subgroup that contains this orbit is K[s] = 〈r2〉 ∪ s〈r2〉 ' Dn/2. The residual
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symmetry algebra T is isomorphic to F(Dn/Dn/2) ⊗̃CDn ' F(Z2) ⊗̃CDn, and is 4n-
dimensional. We label the Dn-orbits in Z2 by e and r, and the stabilizer of both these
orbits is the entire group Dn.

The irreducible representations of T are then (dimensions within parentheses):

Ωe,r
Ji

, Ωe,r
α j

, i = 0,1,2,3; j = 1, . . . , n
2 −1 (4.90)

The restriction of D(Dn) irreps to T gives the following isomorphisms:

Πe,rn/2

Ji
' Ωe

Ji
Πe,rn/2

α j
' Ωe

α j

Πrk

βl
'







Ωrk mod 2

J0
⊕Ωrk mod 2

J1
l = 0

Ωrk mod 2

J2
⊕Ωrk mod 2

J3
l = n

2

Ωrk mod 2
αl

0 < l < n
2

Ωrk mod 2
α

l− n
2

n
2 < l < n

Πs,sr
J0

'

{
Ωe,r

J0
⊕Ωe,r

J2

⊕

j even Ωe,r
α j

n
2 even

Ωe,r
J0

⊕

j even Ωe,r
α j

n
2 odd

Πs,sr
J1

'

{
Ωe,r

J1
⊕Ωe,r

J3

⊕

j even Ωe,r
α j

n
2 even

Ωe,r
J1

⊕

j even Ωe,r
α j

n
2 odd

Πs,sr
J2

'

{
Ωe,r

J2

⊕

j odd Ωe,r
α j

n
2 odd

⊕

j odd Ωe,r
α j

n
2 even

Πs,sr
J3

'

{
Ωe,r

J3

⊕

j odd Ωe,r
α j

n
2 odd

⊕

j odd Ωe,r
α j

n
2 even (4.91)

When β is trivial on the entire group 〈r2〉∪s〈r2〉, the particle ΩB
β is confined. It is easily

seen that this only holds for β = J0,2 and the unconfined particles Ωe,r
J0,2

are irreducible

representations of the unconfined algebra U ' F(Z2)⊗CZ2.
The left and right Hopf kernel of Γ : F(Z2) ⊗̃CDn → F(Z2)⊗CZ2 are isomorphic

to CDn/2. We have to distinguish between the cases where n
2 is either even or odd.

When n
2 is even, the irreducible representations of CDn/2 are given by Ji, i =

0,1,2,3 and α j, j = 1, . . . , n
4 −1. The irreducible T -representations restrict to these

as:

Ωe,r
J0,2

' J0 Ωe,r
J1,3

' J1 Ωe,r
αn/4

' J2 ⊕ J3

Ωe,r
α j

'

{

α j 0 < j < n
4

α− j mod n/2
n
4 < j < n

2
(4.92)

When n
2 is odd the irreducible representations of CDn/2 are J0,1 and α j, j = 1, . . . , n

4 −
1
2 . The restrictions follow the same prescription (4.92), where the case for Ωe,r

αn/4
should

be ignored.

4.3.4 Particles in gauge-invariant sr-condensates
The conjugacy class of sr is [sr] = {sr,sr3, . . . ,sr−1}. The smallest (normal) subgroup
that contains this orbit is K[sr] = 〈r2〉∪ sr〈r2〉 ' Dn/2. The residual symmetry algebra
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T is isomorphic to F(Z2) ⊗̃CDn.
The rest of the calculations are very similar to those for the Π[s]

J0
-condensate. The

labels of the irreducible representations of T are the same:

Ωe,r
Ji

, Ωe,r
α j

, i = 0,1,2,3; j = 1, . . . , n
2 −1 (4.93)

The restriction of D(Dn) irreps to T is also identical to (4.91), except for Πs '
Ωr, Πsr ' Ωe.

On the group 〈r2〉∪ sr〈r2〉, only β = J0,2 are trivial.The unconfined algebra U is
isomorphic to F(Z2)⊗CZ2.

The Hopf kernel the map from T to U is isomorphic to CDn/2. When n
2 is even,

the restrictions of ΩB
β are:

Ωe,r
J0,3

' J0 Ωe,r
J1,2

' J1 Ωe,r
αn/4

' J2 ⊕ J3

Ωe,r
α j

'

{

α j 0 < j < n
4

α− j mod n/2
n
4 < j < n

2
(4.94)

When n
2 is odd the irreducible representations of CDn/2 are J0,1 and α j, j = 1, . . . , n

4 −
1
2 . The restrictions are as above, but the representation Ωe,r

αn/4
does not exist.

4.4 Pure flux magnetic condensates
Next to the class sum there are other possible magnetic condensates, when the conju-
gacy class contains more than one element. In the previous section we showed that
condensates of pure flux a j, so when |φ〉 = |a j〉 ∈ V A

1 for a single j, always have triv-
ial self-braiding. The residual symmetry breaking is exactly as one would expect: the
normal subgroup containing the class A is divided out, and electric symmetry is broken
into the transformations that leave the flux under consideration invariant.

Residual symmetry algebra We now show that T is indeed F(Dn/KA) ⊗̃CNa j
.

The matrix elements (ρab,g) of irreducible representations of D(Dn)
∗ that leave the

condensate |φ〉 invariant must satisfy (3.8). The action of g−1 on |φ〉 reduces to a
scalar factor only if g−1 commutes with the chosen flux, so we demand

g ∈ Na j
. (4.95)

When this is the case, the scalar factor is always equal to 1. Then, just as we have seen
before, the other demand is

ρ(a) = 1, (4.96)

and leads to F(Dn/KA), with just as for gauge-invariant condensates. So we find T '
F(Dn/KA)⊗CNa j

, which is of the general form of corollary 3.3. From now on we
make the choice a j = a1 = a, which we can do without loss of generality, because a
was chosen in A arbritarily.

The irreducible representations are again given by ΩB
β with B an Na-orbit in Dn/KA,

and β an irreducible Na-representation. The character of such a representation is

χB
β (Ph,g) = 1Nh

(g)1B(h)χβ (k−1
h gkh), h ∈ Dn/KA, g ∈ Na. (4.97)

The restriction of a character χA′

α of a D(Dn)-representation ΠA′

α to T is the same as in
(4.74), but with g ∈ Na, instead of Dn.
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Confinement Now we want to find out which of these ΩB
β are confined. We can use

the conditions (3.27) and (3.28). The first reduces to

∑
k∈KA

(1,ηk) ⇀ |φ〉 = ∑
k∈KA

(1,k) ⇀ |φ〉. (4.98)

Because KA is a normal group, we have hKAh−1 = KA ∀h ∈ H. With this we find that

∑
k∈KA

(1,ηk) ⇀ |φ〉 = ∑
k∈KA

(1,ηkη−1) ⇀ (η ⇀ |φ〉) (4.99)

can only be equal to the right-hand side of (4.98) when η ⇀ |φ〉= |φ〉. Now |φ〉= |a〉,
so η ⇀ |φ〉 = η ⇀ |a〉 = |ηaη−1〉. This can only be equal to |φ〉 when η commutes
with a.

Considering that η was chosen arbitrarily in the coset ηKA, we see that the only un-
confined representations have an orbit B that consists of elements of the form nKA, n∈
Na.

Because a ∈ Na, the other condition reduces to

β (x−1
η kpak−1

p xη) = 1 ∀η ∈ B, (4.100)

where the Na-coset representative kp can now only be e, because |φ〉 = |a〉. But as we
have just shown that η = nKA for some n ∈ Na, xη ∈ Na, and we then only demand

β (a) = 1. (4.101)

These conditions do not always lead to a general form as they did for electric and
gauge-invariant condensates. In §4.4.2 we will see that sometimes the set of represen-
tations that satisfy these relations are the irreducible representations of a Hopf algebra
for which the element given by (3.21) does not constitute a valid universal R-matrix.
Because we want to be able to define braiding for unconfined particles, this full set
of solutions must be restricted so that the remaining solutions do allow a universal R-
matrix. In [7, §11.2] it was conjectured that in that case the unconfined algebra would
be given by

U ' D
(
Na/(KA ∩Na)

)
. (4.102)

4.4.1 Particles in pure rk-condensates
The conjugacy class [rk] has two elements: rk and r−k. We choose rk as our distin-
guished element. The minimal normal subgroup K

[rk]
that contains [rk] is the subgroup

generated by rk, which was shown to be equivalent to 〈rgcd(n,k)〉 ' Zx in §4.3.2.
The stabilizer of rk is 〈r〉 ' Zn, so that T ' F(Dgcd(n,k)) ⊗̃CZn, a 2ngcd(n,k)-di-

mensional Hopf algebra. We must distinguish between the cases in which gcd(n,k) is
even or odd.

Case gcd(n,k) even The orbits in Dgcd(n,k) of the 〈r〉-action are {rk′}, 0 ≤ k′ <

gcd(n,k) and [s], [sr] with gcd(n,k)
2 elements each. Their 〈r〉-stabilizers are 〈r〉 for [rk′ ]

and 〈rgcd(n,k)/2〉 ' Z2x for [s], [sr]. The irreducible representations of T are then (di-
mensions within parentheses)

Ωrk′

βl
(1) k′ = 0, . . . ,gcd(n,k)−1; l = 0, . . . ,n−1

Ωs,sr
β

l′
( gcd(n,k)

2 ) l′ = 0, . . . ,2x−1 (4.103)
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The dimensions correctly add up to 2ngcd(n,k). The branching rules for restrictions of
D(Dn)-representations ΠA

α to T are

Πe,rn/2

J0,1
' Ωe,rn/2

β0
Πe,rn/2

J2,3
' Ωe,rn/2

βn/2

Πe,rn/2

α j
' Ωe,rn/2

β j
⊕Ωe,rn/2

β− j
Πrk

βl
' Ωrk mod gcd(n,k)

βl
⊕Ωr−k mod gcd(n,k)

β−l

Πs,sr
J0,1

'
⊕

l′ even

Ωs,sr
β

l′
Πs,sr

J2,3
'
⊕

l′ odd

Ωs,sr
β

l′
(4.104)

We have two conditions for the irreducible representations ΩB
β to be unconfined. The

first says that the orbit B must consist of elements of the form n〈rgcd(n,k)〉,n ∈ 〈r〉, the
other states that β (rk) = 1. From the first condition we see that the representations
Ωs,sr are confined, and the second allows only those βl for which l is a multiple of x.
What is left are representations of an algebra F(Zgcd(n,k))⊗CZgcd(n,k) ' D(Zgcd(n,k)).
This is indeed of the general form D(Na/KA ∩Na) = D(Zn/Zx).

The right Hopf kernel is given by (3.36), which amounts to

RKer(Γ) ' F
(
(Dn/〈rgcd(n,k)〉)/(〈r〉/〈rgcd(n,k)〉)

)
⊗̃C(〈r〉∩ 〈rgcd(n,k)〉)

' F(Dn/Zn) ⊗̃C〈rgcd(n,k)〉 ' F(Z2) ⊗̃CZx. (4.105)

We label its representations by (Ee,s,ρl), l = 0, . . . ,x − 1. The restriction of T -
representations is then given by

Ωrk′

βl
' (Ee,ρl mod x), Ωs,sr

β
l′
' gcd(n,k)

2 (Es,ρl′ mod x). (4.106)

Case gcd(n,k) odd In this case the 〈r〉-orbits in Dgcd(n,k) are {rk′}, k′ = 0, . . . ,n−1

and [s] = {s, . . . ,sr−1}, with stabilizers 〈r〉 and 〈rgcd(n,k)〉. The irreducible representa-
tions are (dimensions within parentheses):

Ωrk′

βl
(1) k′ = 0, . . . ,gcd(n,k)−1; l = 0, . . . ,n−1

Ωs
β

l′
(gcd(n,k)) l′ = 0, . . . ,x−1 (4.107)

The branching rules are given by:

Πe,rn/2

J0,1
' Ωe,rn/2

β0
Πe,rn/2

J2,3
' Ωe,rn/2

βn/2

Πe,rn/2

α j
' Ωe,rn/2

β j
⊕Ωe,rn/2

β− j
Πrk

βl
' Ωrk mod gcd(n,k)

βl
⊕Ωr−k mod gcd(n,k)

β−l

Πs,sr
J0,1

'
⊕

l′ even

Ωs
β

l′
Πs,sr

J2,3
'
⊕

l′ odd

Ωs
β

l′
(4.108)

Following the same reasoning as for gcd(n,k) even, only Ωrk

βzx
, z = 0, . . . ,gcd(n,k)−1

are unconfined, so that U ' D(Zgcd(n,k)). The Hopf kernel again is isomorphic to
F(Z2) ⊗̃CZx, and the restrictions of T -representations are

Ωrk′

βl
' (Ee,ρl mod x), Ωs

β
l′
' (Es,ρl′). (4.109)
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4.4.2 Particles in pure s-condensates
When forming a condensate of particles in the state |φ〉 = |s〉, the residual symmetry
algebra is T ' F(Z2)⊗CD2. The smallest normal subgroup K[s] of Dn that contains

s is 〈r2〉∪ s〈r2〉. The stabilizer Ns of the element s is {e,rn/2,s,srn/2}. Its irreducible
representations are

Ωe
Ji
, Ωr

Ji
i = 0,1,2,3 (4.110)

and are all of dimension one. The branching of the restriction of representations ΠA
α of

D(Dn) to T is given by
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





Πe,rn/2

J0,2
' Ωe

J0
, Πe,rn/2

J1,3
' Ωe

J1

n
2 even

Πe
Ji
' Ωe

Ji
, Πrn/2

Ji
' Ωr

Ji

n
2 odd

Πe
α j

'

{

Ωe
J0
⊕Ωe

J1
j even

Ωe
J2
⊕Ωe

J3
j odd

Πrn/2

α j
'







Ωe
J0
⊕Ωe

J1
j even, n

2 even
Ωe

J2
⊕Ωe

J3
j odd, n

2 even
Ωr

J0
⊕Ωr

J1
j even, n

2 odd
Ωr

J2
⊕Ωr

J3
j odd, n

2 odd

Πrk

βl
'







Ωe
J0
⊕Ωe

J1
l even,k even

Ωe
J2
⊕Ωe

J3
l odd,k even

Ωr
J0
⊕Ωr

J1
l even,k odd

Ωr
J2
⊕Ωr

J3
l odd,k odd

Πs
Ji
' Ωe

Ji
, Πsr

Ji
' Ωr

Ji
(4.111)

The particles ΩB
β that are unconfined have the properties that the orbit B consists of

elements nK[s] with n in the s-stabilizer Ns, and that β (s) = 1. This last requirement

holds for β = J0,J2; for the first we see that rKs is the same orbit as rn/2K[s] when n
2 is

odd. We distinguish the following cases:

Case n
2 even The only representations which are unconfined are Ωe

J0,2
. These two are

irreducible representations of a Hopf algebra F(e)⊗CZ2. However, when calculating
the universal R-matrix according to (3.21), we are left with

R = (1,e)⊗
(
1,(e+ s)

)
, (4.112)

where we have labelled the basis vectors of F(e)⊗CZ2 by (1,e) and (1,s). This not a
valid universal R-matrix, it is not even invertible. So here we have a concrete example
of a set of solutions for which the braiding is not well-defined, as mentioned earlier.
The suggested solution was to define the unconfined algebra by (4.102), which in this
case would leave only D(e), the one-dimensional, trivial Hopf algebra.

In this case we could also define R = (1,e)⊗(1,e), because F(e)⊗CZ2 is cocom-
mutative; it is then unclear, however, how this braiding would relate to the braiding of
D(Dn) itself.

When we choose U ' D(e), all representations but Ωe
J0

are confined; the Hopf
kernel is isomorphic to T itself, and the domain walls are characterized by the labels
B,β as well.

Case n
2 odd Now the orbit [r] can be unconfined as well: the unconfined particles are

Ωe,r
J0,2

, and U ' F(Z2)⊗Z2 ' D(D2). This agrees with (4.102), because K[s] ∩Ns =

{e,s}, so U ' D(D2/Z2) ' D(Z2). The Hopf kernel is given by F(e)⊗CZ2, and the
confined particles Ωe,r

J1,3
restrict to the non-trivial representation of this algebra.

We see that in this case, the description of confinement follows the general rules.
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4.4.3 Particles in pure sr-condensates

The calculation for pure sr-condensates is similar to that for pure s-condensates. We
have K[sr] = 〈r2〉 ∪ sr〈r2〉 ' Dn/2 and Nsr = {e,rn/2,sr,srn/2+1} ' D2. The residual
symmetry algebra T is isomorphic to F(Z2)⊗CD2. Its irreducible representations are

Ωe
Ji
, Ωr

Ji
. i = 0,1,2,3 (4.113)

The branching rules for restrictions of D(Dn)-representations are identical to (4.111),
except for







Πe,rn/2

J0,3
' Ωe

J0
, Πe,rn/2

J1,2
' Ωe

J1

n
2 even

Πe
J0,1

' Ωe
J0,1

, Πe
J2,3

' Ωe
J3,2

, Πrn/2

J0,1
' Ωr

J0,1
, Πrn/2

J2,3
' Ωr

J3,2

n
2 odd

Πs
Ji
' Ωr

Ji
, Πsr

Ji
' Ωe

Ji
(4.114)

For confinement, we again distinguish between the cases whether n
2 is even or odd.

Case n
2 even The representations Ωe

J0,2
satisfy the unconfining relations (4.100) and

(4.101), which would lead to U ' F(e)⊗CZ2. Again, this cannot be made into a
braided Hopf algebra. When we then restrict ourselves to U ' D(e), only the trivial
representation is unconfined, the rest classify inequivalent domain walls.

Case n
2 odd The representations Ωe,r

J0,2
are unconfined, so that U ' F(Z2)⊗CZ2 '

D(Z2). This follows the general description U ' D
(
Nsr/(K[sr] ∩ Nsr)

)
. The Hopf

kernel is isomorphic to F(e)⊗CZ2, and the unconfined representations restrict to the
trivial, the confined representations to the non-trivial representation of this Hopf alge-
bra.

4.4.4 Another case: a two-flux sum condensate

We were able to show that in general gauge-invariant and pure flux magnetic conden-
sate obey trivial self-braiding. This does not exclude, however, that in special cases
there are other states, other superpositions of pure flux basis vectors, that have trivial
self-braiding as well. We treat one such example here.

We take n/2 even. In that case the element srn/2 is in the same conjugacy class as
s. We assume a condensate forms in the state |φ〉 = |s〉+ |srn/2〉 ∈V s

1 , a superposition
of two out of n/2 possible basis vectors. For n = 4 this is identical to the class sum
(gauge-invariant state) and our results should reduce those found in §4.3.3.

Trivial self-braiding and spin Particles represented by a magnetic representation
always have trivial spin factor, due to the trivial electric representation.

The demand for trivial self-braiding is:

Πs
1 ⊗Πs

1(R)|φ〉⊗ |φ〉 = |φ〉⊗ |φ〉. (4.115)
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Writing out the left-hand side:

Πs
1 ⊗Πs

1(R)|φ〉⊗ |φ〉 = ∑
h∈Dn

Πs
1(Ph,e)⊗Πs

1(1,h)(|φ〉⊗ |φ〉)

= ∑
h∈Dn

Πs
1(Ph,e)(|s〉+ |srn/2〉)⊗Πs

1(1,h)(|s〉+ |srn/2〉)

= |s〉⊗Πs
1(1,s)(|s〉+ |srn/2〉)+

|srn/2〉⊗Πs
1(1,srn/2)(|s〉+ |srn/2〉)

= |s〉⊗ (|s〉+ |srn/2〉)+ |srn2
〉⊗ (|s〉+ |srn/2〉)

= |φ〉⊗ |φ〉. (4.116)

Therefore this constitutes a valid condensate.

Residual symmetry algebra The residual symmetry algebra is spanned by matrix
elements (ρab,g) of representations of D(Dn)

∗, that satisfy the relation (3.8). Now

(1,rk) ⇀ |s〉+ |srn/2〉 = |sr−2k〉+ |srn/2−2k〉. (4.117)

The right-hand side of this equation will be equal to the condensate vector itself when
k = 0 mod n

4 (recall that n
2 is even). One can readily see that in those cases, the elements

srk for the same k will leave the condensate invariant as well. This gives the set 〈rn/4〉∪
s〈rn/4〉 ' D4, which all act on the condensate vector by a scalar factor 1.

Next, we wish to know which representations ρ of Dn are equal to the identity
matrix on the distinguished element s. This is only so for the representations J0 and J2,
which together span F(Z2).

So we have found that T ' F(Z2)⊗̃CD4. We see that this is indeed different from
pure s-condensates (for which T ' F(Z2) ⊗̃CD2) and that it is equal to the gauge-
invariant s-condensate for n = 4.

The representations of T are Ωe,r
Ji

(one-dimensional) and Ωe,r
α (two-dimensional).

The branching rules from restrictions of D(Dn)-representations ΠA
α to these T -

representations are given by:

Πe,rn/2

Ji
' Ωe

Ji

Πe,rn/2

α j
'







Ωe
α j odd

Ωe
J0
⊕Ωe

J1
j mod 4 = 0

Ωe
J2
⊕Ωe

J3
j mod 4 = 2

Πrk

βl
'







Ωrk mod 2
α l odd

Ωrk mod 2

J0
⊕Ωe

J1
l mod 4 = 0

Ωrk mod 2

J2
⊕Ωe

J3
l mod 4 = 2

Πs,sr
J0

' n
4 Ωe,r

J0
⊕Ωe,r

J2

Πs,sr
J1

' n
4 Ωe,r

J1
⊕Ωe,r

J3

Πs,sr
J2,3

' n
4 Ωe,r

α (4.118)
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Confinement Because T is of the general form F(H/K) ⊗̃CN, with H = Dn, K =
Dn/2 and N = D4, we can use proposition 3.5 to determine the unconfined algebra U .
The two demands on the representations ΩB

β are

∑
k even

(1,ηrk) ⇀ |φ〉 = ∑
k even

(1,rk) ⇀ |φ〉 ∀η ∈ B, (4.119)

β (s) = β (srn/2) = 1. (4.120)

The first relation is trivially satisfied when B = e. When B = r, the relation holds only
when n/4 is odd. The second relation holds only when β is either J0 or J2. So we find

U '

{
F(Z2) ⊗̃CZ2

n
4 odd

F(e) ⊗̃CZ2
n
4 even (4.121)

So when n/4 is odd, this conforms to the general form U ' D
(
N/(K ∩N)

)
, because

then K∩N = Dn/2∩D4 = D2. However, when n/4 is even, we get the same form as we
did for pure s-condensates in §4.4.2. Because now K ∩N = Dn/2 ∩D4 = D4, we may
decide to choose U ' D(e), in which case we can define a braiding for the unconfined
algebra.

The rest of the treatment is actually analogous to both cases (n/2 even or odd) of
pure s-condensates, and we do not repeat that here. Do note, that when n = 4, n/4 = 1
is odd, and the unconfined algebra D(Z2) we found above corresponds correctly to the
gauge-invariant condensate.

We have now seen one example of another type of valid magnetic condensate,
which is still described by the general formalism of chapter 3. The residual symme-
try algebra and the unconfined algebra may be larger than that of the corresponding
pure-flux condensates.

4.5 Dyonic condensates
Dyonic condensates consist of particles represented by state vectors in the represen-
tation space of representations of the form ΠA

α , where A 6= [e] and α is not the trivial
representation J0 or β0.

The dyonic condensates are the most interesting objects in our discussion. As we
will see, some dyonic condensates are not of the form F(H/K) ⊗̃CN; then the repre-
sentation structure may not be directly deducible, and confinement can no longer be
described by the reduced conditions (3.27) and (3.28).

Trivial spin and self-braiding Let us first look at which irreducible representa-
tions of D(Dn) allow condensate vectors which have trivial spin factor and trivial self-
braiding. By proposition A.8 some condensate of every quantum double of a group
with non-trivial center will satisfy the conditions, so we expect at least one condensate
of representations with conjugacy class [rn/2] to be a valid condensate.

If we look at table 4.1, we see that Πrn/2

J1
, Πrn/2

α j
( j even), Πrk

βl
(lk mod n = 0), Πs

J2

and Πsr
J3

always have trivial spin; Πrn/2

J2
and Πrn/2

J3
will have as well if n/2 is even.

The representation space of ΠA
α is spanned by basis vectors |ai,v j〉 as in (2.8). A

general vector will then be ∑i λi|ai,v〉, with λi ∈ C, and we have left the state of the
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CH-representation implicit. The trivial self-braiding condition (3.20) is then written as

∑
i

λi|ai,v〉⊗∑
j

λ j|a j,v〉 = τ ◦∑
h

(
ΠA

α(Ph,e)(∑iλi|ai,v〉)⊗ΠA
α(1,h)(∑ jλ j|a j,v〉)

)

= τ ◦∑
i

(
λi|ai,v〉⊗ΠA

α(ai)(∑ jλ j|a j,v〉)
)

= τ ◦∑
i

(
λi|ai,v〉⊗ (∑ jλ j|aia ja

−1
i ,α(k−1

x aik j)v〉)
)

(4.122)

If we want this equation to be satisfied, then α(k−1
x aik j) must be the identity matrix for

all i and j, and moreover, ∀i, j λ j = λi⇀ j, where λi⇀ j denotes the coefficient of the
coset to which aia ja

−1
i belongs.

These seem perhaps to be very strong demands, but when all the λi are equal, or
when the elements ai of the conjugacy class commute, this will boil down to just the
demand on α . However, in each specific case there may be other linear combinations
of basis vectors which have trivial self-braiding as well.

For D(Dn), we find that the trivial spin factor condition is equal to that of trivial
self-braiding for all vectors in all representations except for those in Πs

J2
and Πsr

J3
. The

conjugacy classes [s] and [sr] are large and its elements do not all commute, so that we
may only expect certain state vectors to comply.

For example, when A = [s] = {s,sr2, . . . ,sr−2}, we have sr2psr2qsr2p = sr2(2p−q).
If n/2 is odd, we will reach all sr2q again and the only allowed vector is the one with
identical coefficients. But if n/2 is even we will have ‘steps of four’. We can then
devide [s] into two equivalence classes, labelled by s and sr2, the elements of which
can be reached by conjugation by some sr2p. Then the coefficient of a certain basis
vector need only be equal for all elements in its class, but can differ from those of the
other class. In other words, the vector

n/4−1

∑
i=0

|sr4i,v〉+λ |sr4i+2,v〉 (4.123)

will have trivial self-braiding if the condition on α is satisfied for any λ ∈ C. For Πsr
J3

there is a similar calculation.
Condensates of state vectors |φ〉 for which the flux-part is one-dimensional, like for

pure flux-condensates, can have trivial self-braiding as well, and in specific cases there
may be other vectors still. We will only treat class sum dyonic condensates, for which
λi = λ ∀i.

Particles in the condensates We calculate the residual symmetry algebras of these
condensates by looking at which representations (ρ,Eg) of D(Dn)

∗ satisfy (3.8). When
all representations for a certain condensate of ΠA

α have χρ(a)/dρ = 1, then T is of the
form F(Dn/K) ⊗̃CN, and we will give the algebra in question.

Many condensates are not of this form. If they are not, the residual symmetry
algebra will be larger than one would expect, that is with F(H/K) where K the group
generated by the conjugacy class A, and with CN where N the intersection of K and
N|φ〉, the stabilizer of |φ〉. The algebra F(H/K) ⊗̃CN will be then be a subalgebra of

T (cf. [7, prop 9 in §7.3]). We have assumed† that T is a Hopf algebra, and then
dimT divides dimD(Dn), and dimF(H/K) ⊗̃CN divides dimT by lemma A.5.

†See the remark on p.28.
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Up until now, no general description for these cases has been found. Of course,
manual calculations can be performed, but this can get quite complicated. In the next
chapter, we fully describe a condensate of the representation Πr2

J1
in a D(D4)-theory.

Other condensates will not be discussed, except for some crude indications of the form
of the residual symmetry algebra below.

4.5.1 Particles in dyonic rn/2-condensates

The conjugacy class [rn/2] contains but one element, because rn/2 is central in Dn. We
determine the value of the character on this element for all representations of Dn:

J0 : 1, J1 : 1, J2 : (−1)n/2, J3 : (−1)n/2, αm : (−1)m m = 1, . . . ,
n
2
−1.

(4.124)
From corrolary 3.3 we know that we have a residual algebra of the form F(H/K) ⊗̃CN
only when for the representations (ρ ,g)≡ (ρ,Eg) of D(Dn)

∗ satisfying (3.8) this value
is 1. With the values given above, we expect that this does not hold in many cases.

The Πrn/2

J1
-condensate We calculate Πrn/2

J1
(1,g−1)|φ〉 for all g ∈ Dn. Because rn/2 is

central in Dn, |φ〉 is equivalent to just the vector in the representation space of J1. From
(4.4):

J1(r
−k) = 1, J1(srk) = −1. (4.125)

Then the following D(Dn)
∗-representations (ρ ,g) leave any condensate in V rn/2

J1
invari-

ant:

(J j,r
k), (αm,rk) m even, (αm,srk) m odd

n
2

even, (4.126)

(J0,1,r
k), (J2,3,srk), (αm,rk) m even, (αm,srk) m odd

n
2

odd. (4.127)

Because n > 2, we always have at least (α1,srk) as D(Dn)
∗-representations satisfying

(3.8), and tr α1(r
n/2) = −1, so there is no residual algebra of the form F(H/K) ⊗̃CN.

The case for n = 4 is treated in the next chapter. It will turn out that the residual
symmetry algebra T will consist of two copies of F(D2) ⊗̃CZ4, which are connected
through the action of one special element (α11 + α21,s). The unconfined algebra U

will also consist of two copies of D(Z2). This explicitly shows that the residual sym-
metry in these Hopf-symmetric theories may be larger than one would naively expect.

The Πrn/2

J2,3
-condensates These condensates only have trivial spin and self-braiding if

n/2 is even.
We have

J2,3(r
−k) = (−1)k, J2(srk) = (−1)k, J3(srk) = (−1)k+1. (4.128)

Then the following D(Dn)
∗-representations (ρ ,g) leave any condensate in V rn/2

J2
invari-

ant:

(J j,r
k), (J j,srk) k even, (αm,rk),(αm,srk) sgn(mk) = +1. (4.129)
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The following (ρ ,g) leave any condensate in V rn/2

J3
invariant:

(J j,r
k) k even, (J j,srk) k odd, (αm,rk) sgn(mk) = +1, (αm,srk) sgn(mk) = −1.

(4.130)
We have at least (α1,sr) for J2 and (α1,s) for J3 satifying (3.8), so there is no residual
algebra of the form F(H/K) ⊗̃CN.

The Πrn/2
α j

-condensates To satisfy trivial spin and self-braiding, j has to be even.

According to (4.124), the value of χρ(rn/2)/dρ can be either +1 or −1. For those
ρ for which this expression equals 1, we find the subgroup 〈rx〉 of Dn with the property
g−1 ⇀ |φ〉 = 1|φ〉, analogous to the derivation of §4.2.4. In that section it is also
explained that some |φ〉 allow the elements s〈rx〉 as well.

Now when x is even, j x
2 = j

gcd(n, j)
n
2 = n

2 mod n, because in this case j
gcd(n, j) is odd.

The value of α j on the elements rx/2+zx, z = 0, . . . ,gcd(n, j)−1 is then −1 times the
unit matrix. These elements will be coupled to those representations of Dn for which
the representation value on rn/2 is −1. When n

2 is odd, x can never be even, because j
is even.

When |φ〉 is of the appropriate form, all these elements multiplied (from the right)
by (J0,s) will leave the condensate invariant as well. We find that the following ele-
ments of D(Dn) span the residual symmetry algebra T :







(Ji,r
zx), (α2m,rzx), (α2m+1,r

x/2+zx), n
2 even,x even

(Ji,r
zx), (α2m,rzx), n

2 even,x odd
(J0,1,r

zx), (α2m,rzx), n
2 odd

(4.131)

accompanied by the same number of basis vectors obtained by right multiplication of
the above by (J0,s), for some |φ〉.

We see that when x is odd, all the basis vectors have the property χρ(rn/2)/dρ = 1,
and the residual symmetry algebra is therefore of the form F(H/K) ⊗̃CN by corollary
3.3. This amounts to

T ' F(Dn/2) ⊗̃CZgcd(n, j) or F(Dn/2) ⊗̃CDgcd(n, j). (4.132)

When adhering to the general form U ' D
(
N

rn/2/(Krn/2 ∩N
rn/2)

)
for the unconfined

algebra, we find U ' D(Zgcd(n, j)) or D(Dgcd(n, j)), because gcd(n, j) is always even, as
both j and n

2 are.

4.5.2 Particles in dyonic rk-condensates

Recall that the only Πrk

βl
-condensates with trivial spin and self-braiding are those with

kl = 0 mod n.
The conjugacy class [rk] = {rk,r−k} for each k. The values of the characters on the

distinguished element rk are

J0 : 1, J1 : 1, J2 : (−1)k, J3 : (−1)k, αm : qmk +q−mk m = 1, . . . ,
n
2
−1.

(4.133)
Now χαm(rn/2)/dαm = 1

2 (qmk +q−mk) can only be a root of unity if mk = −mk mod n
(cf. proof of proposition 3.2), so when mk = 0 mod n

2 , i.e. m = z n/2
gcd(n/2,k) z ∈ Z; if
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gcd(n/2,k) = 1, this can never be satisfied, as m ∈ {1, . . . , n
2 − 1}; also if n/2 is odd

and k is even, qmk can never be −1. If it is not a root of unity, the matrix elements of
such representations cannot leave the condensate invariant by corrolary 3.3.

The representation space V rk

βl
is two-dimensional, and the two basis vectors are la-

belled by the elements of [rk], namely rk and r−k; the coset representatives are krk = e
and kr−k = s. A general vector is given by a linear combination of these with coeffi-

cients λrk and λr−k . The action of Πrk

βl
(1,g−1) is then given by

Πrk

βl
(1,r−p)

(
λrk

λr−k

)

=

(
βl(r

−p)λrk

βl(r
p)λr−k

)

=

(
q−l pλrk

ql pλr−k

)

, (4.134)

Πrk

βl
(1,srp)

(
λrk

λr−k

)

=

(
βl(r

−p)λr−k

βl(r
p)λrk

)

=

(
q−l pλr−k

ql pλrk

)

. (4.135)

We need the vectors to be eigenvectors of these actions with eigenvalues either 1 or −1,
according to (4.133). For the elements (1,rp), this leads to the condition l p = 0 mod n
or l p = n

2 mod n, independent of the values of λr±k . We denote x ≡ n
gcd(n,l) and x̃ =

n/2
gcd(n/2,l) . The smallest p satisfying this equation is x resp. x + x̃, and the subgroups
{rzx} resp. {rzx+x̃}, z ∈Z, which are both isomorphic to Zgcd(n,l) leave the condensate
invariant. For n/2 odd, l p can only be −1, when l is odd as well, so then we have an
extra condition, and fewer elements may be left.

For the elements (1,srp), the outcome does depend on the coefficients. We have
two equations leading both to the same condition:

λr−k = ±ql pλrk . (4.136)

If the values of λr±k allow this equation to hold for some p, then the elements srzx+p or

srzx+ n/2
gcd(n/2,l) +p also leave the condensate invariant for any z ∈ Z.

When k is even, we find the following (ρ,g) to satisfy (3.8), where for n
2 odd, the

elements containing x̃ only occur when l is odd:

(J j,r
zx), (αm,rzx), (αm′ ,rzx+x̃)

if (4.136) holds also: (J j,srzx+p), (αm,srzx+p), (αm′ ,srzx+x̃+p) (4.137)

z ∈ 0, . . . ,gcd(n, l), m = z′ n
gcd(n,k) , m′ = z′ n

gcd(n,k) + n/2
gcd(n/2,k) , z′ ∈ 0, . . . ,gcd(n,k).

When k is odd, ρ = J2,3(r
k) = −1 and they are then coupled to the F(Dn)-representa-

tions Eg with g = (s)rzx+x̃.
There are some cases where the only D(Dn)

∗-representations found in this manner
all have χρ(rk)/dρ = 1. This occurs when k is even and n/2 is odd, or when k is odd,
n/2 is odd and l is even. In these cases the residual symmetry algebra T is of the form
F(Dgcd(n,k)) ⊗̃CZgcd(n,l), or F(Dgcd(n,k)) ⊗̃CDgcd(n,l) when we can satisfy (4.136).

The particles in the condensate are irreducible representations of this algebra, and
the branching rules are calculated in the same way as we did for electric and magnetic
condensates.

The unconfined algebra will be given by U ' D(Zw) or U ' D(Dw), where w is
determined by

gcd(n,k)gcd(n, l) = wn. (4.138)
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This can be seen by the following argument [7, §12.2]: we know that kl = 0 mod n, and
therefore gcd(n, l)gcd(n,k) = 0 mod n, which gives us (4.138). Now K = 〈rgcd(n,k)〉 and
N = 〈rx〉. Then K ⊂ N, because gcd(n,k) = w n

gcd(n,l) = wx. The unconfined algebra
is shown to be U ' D(N/K ∩N), which now amounts to D(N/K) = D(〈rx〉/〈rwx〉) '
D(Zw). When N ' Dgcd(n,l) the same argument leads to U ' D(Dw).

4.5.3 Particles in dyonic s- and sr-condensates
We have already seen that only Πs

J2
and Πsr

J3
allow trivial self-braiding, and again we

look at the class sum state vector only. In that case very few elements (1,g) leave the
condensate vector invariant: take |φ〉 = ∑n/2−1

k=0
|sr2kvsr2k〉 ∈ V s

J2
. The action of (1,rp)

on |φ〉 is

(1,rp) ⇀
n/2−1

∑
k=0

|sr2kvsr2k〉 = ∑
k

J2(k
−1
sr2k−2p rpksr2k)sr2k−2p. (4.139)

Now the representation values of J2 differ in general depending on the value of k. In
fact, one can calculate that the argument of J2 will be e when p = 0∨ p ≥ n

2 − k and
will be rn/2 when p 6= 0∧ p < n

2 −k, for p = 1, . . . , n
2 −1. Therefore only when p = 0, n

2
all values of J2 will be equal, and |φ〉 is left invariant. Similarly, the elements (1,srp)
never leave |φ〉 invariant, and there is an analogous argument for |φ〉 ∈V sr

J3
.

Particles in dyonic Πs
J2

-condensates We consider which matrix elements (ρab,Eg)

(3.8) can be satisfied. Above, we argued that only g = e,rn/2 can be allowed. The value
of χρ(s)/dρ is 1 for ρ = J0,2 and −1 for ρ = J1,3. Then the matrix elements which span
T are

(J0,2,Ee) and (J1,3,Ern/2). (4.140)

This Hopf algebra T is not of the form F(H/K[s]) ⊗̃CN, and we cannot say any more
without turning to explicit calculation.

Particles in dyonic Πsr
J3

-condensates Following the same reasoning, we find that the
matrix elements

(J0,3,Ee) and (J1,2,Ern/2). (4.141)

span the residual symmetry algebra, which is again not of the form F(H/K[sr]) ⊗̃CN.
With this we have mentioned all dyonic condensates for which the state vector is the

sum of all possible flux-components. There are other possibilities, as mentioned at the
beginning of this section, which we are not considering, but which may be calculated
in the same way we have done throughout this chapter.

4.6 Summary
Using the machinery developed in chapter 3, we have calculated the residual symmetry
algebra, the spectrum of possible excitations in the condensate, the branching rules
of the particles in the unbroken theory, the unconfined particles and the unconfined
algebra, the possible domain walls and the branching of condensate excitations to these
walls for many possible condensates in theories with the symmerty of quantum doubles
of even dihedral groups.
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Which condensates have we treated exactly to this extent? All electric conden-
sates, all gauge-invariant and all pure flux magnetic condensates. For all possible
(showing trivial self-braiding and spin factor) class-sum dyonic condensates, we have
calculated at least the form of the residual symmetry algebra and of the unconfined
algebra for those cases for which the residual symmetry algebra is of the general form
F(H/K) ⊗̃CN.

So the cases that are left out are several magnetic condensates for which the con-
densate vector is some superposition of pure flux basis vectors and not the entire class
sum, and which show trivial self-braiding. One example of these is mentioned. The dy-
onic condensates which are not of the general form must be calculated by hand, which
is done for one case in the next chapter.

Some the peculiarities of Hopf symmetry breaking have come forward in the cal-
culations of this chapter. One of those is that in a purely magnetic condensate, even
electric degrees of freedom may be broken. Also, we have seen explicitly in §4.4.2 that
the relations determining the unconfined algebra U may be insufficient to provide a
braiding derived from the original algebra.



Chapter 5

The Πr2
J1

-condensate in D(D4)

In this chapter we fully describe the residual symmetry algebra and confinement in a
D(D4) theory when a condensate is formed with condensate vector in V r2

J1
. We have

already seen that the residual symmetry algebra T is not just F(D4/〈r
2〉) ⊗̃C〈r〉 '

F(D2) ⊗̃CZ4, as one might expect, but will be a larger Hopf algebra with this one as
a sub-Hopf algebra. The fact that this example somehow falls outside of our general
scheme makes it of course of special interest. That is why we want to analyze this case
in detail.

It turns out that there is a basis in T so that it can be written in a convenient form.
It even turns out that this basis has the nice property that the multiplication of two
basis vector always gives another basis vector, as if it were a group algebra. However,
the coproduct and braid matrix are still non-trivial, so it is not isomorphic to a group
algebra as a Hopf algebra.

This basis can be extended to the whole algebra D(D4). Then it may be hoped
that we can choose such a basis for any quantum double, or perhaps just for D(Dn) for
any even n. Unfortunately, this turns out not to be the case. We can construct a Hopf
algebra from a group algebra so that D(Dn) is a Hopf quotient, but this does not add
much structure to what is already known of the quantum doubles.

5.1 Residual symmetry algebra
The group D4 has five conjugacy classes {e}, {r2}, {rk,r−k}, {s,sr2}, {sr,sr3}, and
five irreducible representations Ji and α = α1. We are interested in a condensate of the
dyonic representation Πr2

J1
, which is one-dimensional, so the result will be the same for

all choices of condensate vectors |φ〉.
We start with determining the residual symmetry algebra. We know from §4.5.1

that this will leave us with an algebra which is not of the form F(Dn/K) ⊗̃CN. From
(4.126), we see that the matrix elements of the following representations of D(D4)

∗

leave |φ〉 invariant, and which therefore span T :

(J j,Erk), (α,Esrk) j,k = 0,1,2,3. (5.1)

There are 4×4 = 16 elements (J j,Erk) and also 16 matrix elements (αab,Esrk), because
α is two-dimensional. This gives us an Hopf algebra T of 32 dimensions, whereas
D(D4) is 64-dimensional.

79
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5.1.1 Hopf algebra structure
We know from proposition 3.1 that this should indeed be a sub-Hopf algebra of D(Dn)
if these matrix elements close under tensor products. Proposition 3.2 asserts that this is
the case, but we calculate it anyway, as it will also provide the multiplication of these
elements.

Tensor products of D(D4)
∗-representations The tensor product of representations

of D(D4)
∗ is defined by the comultiplication in D(D4)

∗. Recall from (3.4) that this
comultiplication is not just the tensor product of the comultiplication of CD4 and that
of F(D4), but rather a twisted tensor product, coming from the multiplication (2.4) of
D(D4). For D(Dn)

∗, n even, we find

∆∗(rp,Prl ) = ∑
l′

(rp,P
rl′ )⊗ (rp,P

rl−l′ )+(rp,P
srl′ )⊗ (r−p,P

srl+l′ ),

∆∗(srp,Prl ) = ∑
l′

(srp,P
rl′ )⊗ (srp+2l′ ,P

rl−l′ )+(srp,P
srl′ )⊗ (sr2l′−p,P

srl+l′ ),

∆∗(rp,Psrl ) = ∑
l′

(rp,P
rl′ )⊗ (rp,P

srl+l′ )+(rp,P
srl′ )⊗ (r−p,P

rl−l′ ),

∆∗(srp,Psrl ) = ∑
l′

(srp,P
rl′ )⊗ (srp+2l′ ,P

srl+l′ )+(srp,P
srl′ )⊗ (sr2l′−p,P

rl−l′ ), (5.2)

or, when all put into one equation:

∆∗(sqrp,Psirl ) = ∑
l′

(sqrp,P
rl′ )⊗ (sqrp+2ql′ ,P

sirl−(−1)il′
)+

(sqrp,P
srl′ )⊗ (sqr−p+2ql′ ,P

si+1rl+(−1)il′
). (5.3)

Tensor products of (J j,Erk) For the tensor products of the irreducible representa-
tions (J j,Erk) this gives us

(
(J j,Erk)⊗ (J j′ ,Erk′ )

)
∆∗(sqrp,Prl ) = ∑

l′
J j(s

qrp)δk,l′ ⊗ J j′(s
qrp+2ql′)δk′,l−l′ (5.4)

= δk+k′,lJ j(s
qrp)J j′(s

qrp), (5.5)

where the second equality holds because J j′(s
qrp+2z) = J j′(s

qrp) ∀z ∈Z, j = 0,1,2,3.
These representations always give zero on elements with Psrl . So we see that for
(J j,Erk) the tensor product is identical to the regular tensor product. The J j then obey
the regular tensor product ‘decomposition’—they are one-dimensional and decompose
into just one irreducible representation—for irreducible D2-representations. Written as
a multiplication table, this gives us

J0 J1 J2 J3
J0 J0 J1 J2 J3
J1 J1 J0 J3 J2
J2 J2 J3 J0 J1
J3 J3 J2 J1 J0

From this we see that these representations form a group which is isomorphic to D2. We
could have known this beforehand, because these are the representations of F(D2), the
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ring of which forms a group isomorphic to D2 itself because D2 is Abelian (Pontryagin
duality).

The part with Erk just forms the group Z4, because as we can read off from (5.4)
Erk E

rk′ = E
rk+k′ . Therefore the representations (J j,Erk), seen as elements of D(D4)

span the subalgebra F(D2)⊗̃CZ4, which one would expect from just electric and mag-
netic symmetry breaking. Note that this algebra is isomorphic to the regular tensor
product F(D2)⊗CZ4, because the action of CZ4 is trivial on F(D2). Consequently,
this algebra is commutative, because Z4 is Abelian; moreover it is a group algebra
because F(D2) ' CD2.

Tensor products of (α,Esrk) Next, we look at the multiplication of the elements
(αab,Esrk) amongst each other. The D4-representation α is defined by

α(rp) =

(
ıp 0
0 (−ı)p

)

, α(srp) =

(
0 (−ı)p

ıp 0

)

. (5.6)

The matrix elements αab are therefore given by

α11(s
irp) = δi,0ıp, α22(s

irp) = δi,0(−ı)p,α12(s
irp) = δi,1(−ı)p, α21(s

irp) = δi,1ıp.
(5.7)

For the tensor product we find

(α ,Esrk)⊗ (α,E
srk′ )∆

∗(sqrp,Prl ) = ∑
l′

α(sqrp)δk,l′ ⊗α(sqr−p+2ql′)δk′, l + l′

= δk′−k,lα(sqrp)⊗α(sqr−p+2qk). (5.8)

The action on elements with Psrl is always zero. For the Esrk we again find the regular
tensor product, extending to the multiplication of a group: Esrk E

srk′ = E
rk′−k . For the

other part, we write the tensor product (α ,Esrk)⊗ (α,E
srk′ ) as matrices:

on rp :







1
(−1)p

(−1)p

1







, on srp :







(−1)k

(−1)−p+k

(−1)p−k

(−1)k







. (5.9)

By comparing these matrices to the representations J j in (4.4), we see that the matrix
elements are either zero or a linear combination of certain J j:

(α ,Esrk)⊗ (α,E
srk′ ) =







1
2







J0 + J1 J0 − J1
J2 + J3 J2 − J3
J2 − J3 J2 + J3

J0 − J1 J0 + J1







, k even

1
2







J0 + J1 J1 − J0
J2 + J3 J3 − J2
J3 − J2 J2 + J3

J1 − J0 J0 + J1







, k odd

(5.10)
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Mixed tensor products In the same way, we can calculate the ‘mixed’ tensor prod-
ucts (αab,Esrk)⊗ (J j,Erk′ ) and (J j,Erk)⊗ (αab,Esrk′ ). We find

(αab,Esrk)⊗ (J0,Erk′ ) = (αab,Esrk+k′ ) (5.11)

(αab,Esrk)⊗ (J1,Erk′ ) = (−1)(1−δa,b)(αab,Esrk+k′ ) (5.12)

(αab,Esrk)⊗ (J2,Erk′ ) = (α
ab

,E
srk+k′ ) (5.13)

(αab,Esrk)⊗ (J3,Erk′ ) = (−1)(1−δa,b)(α
ab

,E
srk+k′ ), (5.14)

(J0,Erk)⊗ (αab,Esrk′ ) = (−1)k(1−δa,b)(αab,Esrk′−k) (5.15)

(J1,Erk)⊗ (αab,Esrk′ ) = (−1)(k+1)(1−δa,b)(αab,Esrk′−k) (5.16)

(J2,Erk)⊗ (αab,Esrk′ ) = (−1)k(1−δa,b)(α
ab

,E
srk′−k) (5.17)

(J3,Erk)⊗ (αab,Esrk′ ) = (−1)(k+1)(1−δa,b)(α
ab

,E
srk′−k) (5.18)

Here a,b = 1,2 and 1 = 2, 2 = 1.

Unit By examining the multiplication rules of the previous paragraph, one sees that
the element (J0,Ee) is a unit for this multiplication.

Comultiplication All in all, we find that this subset does indeed close under the
algebra multiplication, and is therefore a subalgebra of D(D4). We also want it to be
closed under comultiplication.

The comultiplication in D(D4)'D(D4)
∗∗ is related to the multiplication of D(D4)

∗

by ∆(ρab,Eg) = (ρab,Eg)◦µ∗ when regarded as functions on D(D4)
∗†.

For (J j,Erk) we find

∆(J j,Erk)
(
(g,Ph)⊗ (g′,Ph′)

)
= (J j,Erk)(gg′,δh,h′Ph) = J j(gg′)δhh′Erk(Ph)

= J j(g)J j(g
′)Ph(r

k)Ph′(r
k), (5.19)

where the last equality holds because J j is a representation. So we see that ∆(J j,Erk) =
(J j,Erk)⊗ (J j,Erk), the trivial coproduct. We could have expected this, as we noted
before that the (J j,Erk) form a group algebra.

For the elements (αab,Esrk) it is a little more complicated. The Esrk -part will still
give Esrk ⊗Esrk , but we have to calculate the other part. Let’s do this for α11. First note
that this function on D4 is only non-zero for elements in 〈r〉. Then we have

α11(r
prp′) = ıp+p′ = ıpıp′ and α11(srpsrp′) = ıp′−p = ı−pıp′ . (5.20)

Now ıp corresponds to α11 when the argument is rp. The function that gives ı−p for the
elements srp is α12, and ıp corresponds to α21. This leads to

∆(α11,Esrk) = (α11,Esrk)⊗ (α11,Esrk)+(α12,Esrk)⊗ (α21,Esrk). (5.21)

Because αab is only non-zero on elements s1−δa,brp, the first terms only gives values
for elements of the form rp ⊗ rp′ and the second only for srp ⊗ srp′ . Mixed terms as
rp ⊗ srp′ always gives zero, as they should.

†We could also write out the matrix elements of the representations of D(D4)
∗ on the basis {(Ph,g)} of

D(D4), but because the multiplication in D(D4)
∗ is that of the regular tensor product, this method is easier.
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In the same way one can calculate that

∆(α22,Esrk) = (α22,Esrk)⊗ (α22,Esrk)+(α21,Esrk)⊗ (α12,Esrk); (5.22)

∆(α12,Esrk) = (α11,Esrk)⊗ (α12,Esrk)+(α12,Esrk)⊗ (α22,Esrk); (5.23)

∆(α21,Esrk) = (α22,Esrk)⊗ (α21,Esrk)+(α21,Esrk)⊗ (α11,Esrk). (5.24)

So we see that T is also closed under comultiplication. Also note that the particular
value of Esrk has no influence on the α-part of these tensor products, a property that we
already know from §2.2.1.

Counit The counit of D(D4) ' D(D4)
∗∗ is given by the unit map η∗ of D(D4)

∗. So

ε(ρab,Eg) = ∑
h∈H

(e,Ph)(ρab,Eg) = ρab(e)∑
h

Ph(g) = δa,b. (5.25)

Antipode From both proposition 3.1 and lemma A.4 we know that T should also
close under the antipode map of D(D4). But let’s check it anyway.

The antipode S of D(D4) ' D(D4)
∗∗ is given by

S(ρab,Eg) = (ρab,g)◦S∗. (5.26)

The antipode of the dual quantum double is given by (A.31); for D(D4)
∗:

S∗(sqrp,P
sq′ rp′ ) = (sqr(−1)q′ (p−2qp′),P

sq′ rp′(−1)q′
). (5.27)

With this we find

S(J j,Erk) = (J j,Erk)◦S∗ = (J j,Er−k), (5.28)

S(αab,Esrk) = (αab,Esrk)◦S∗ = (−1)k(1−δa,b)(α
ab

,Esrk). (5.29)

So T is indeed closed under the antipode, and it is a sub-Hopf algebra of D(D4).

5.1.2 Irreducible representations
We want to know what the irreducible representations of T are: if it were an algebra
of the form F(H/K) ⊗̃CN, the representations would be labelled by N-orbits in H/K
and irreducible representations of the stabilizers in N of the distinguished elements of
these orbits. Now however, all we know is that it is a finite-dimensional Hopf algebra,
and such algebras are just starting to get classified (see for instance the introduction of
[3]), and even then, its representation structure may not be fully known.

Finding irreducible representations However, we do know that T is a sub-Hopf
algebra of D(D4), so the (irreducible) representations of D(D4) are also representations
of D(D4) of T by restriction, and should decompose into irreducible representations.
For D(D4), all irreducible representations are either one- or two-dimensional, and it is
not a hopeless task to try and examine all representations.

The two things that we should look for are equivalent representations, and redu-
cible representations. Two representations π and π ′ of an algebra A are equivalent if
π ′(a) = Mπ(a)M−1 ∀a ∈ A, for some matrix M, which does not depend on the algebra
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element a. We denote this by π ′ ∼ π , and the transformation by M is called a similarity
transformation.

A representation is (completely) reducible if it is equivalent to a direct sum of
irreducible representations. In that case, we can write it as

π =






π1
. . .

πk




 , (5.30)

where the πk are irreducible representations.
For our case of D(D4), we should therefore choose convenient bases for the ir-

reducible representations, determine whether the two-dimensional repesentations are
equivalent to the direct sum of two one-dimensional representations, and then look for
equivalences.

So we are trying to find the irreducible rerpesentations of T by the branching of
the representations of D(D4), as opposed to the procedure we followed in chapter 4
where we first determined the representations of the residual symmetry algebra and
then calculated the branching rules.

What can we expect? Because we have condensed a vector in V r2

J1
, we expect the

representations that differ from others only by the ‘properties’ of r2 or J1 to be equiv-
alent to those other representations. For example, we expect representations Πr2

J j
to be

equivalent to Πe
J j
⊗Πe

J1
. The representations Πr

βl
are two-dimensional because of the

conjugacy class with two elements r and r3, and should reduce to the direct sum of two
one-dimensional representations whenever βl(r) = βl(r

3).

Irreducible T -representations The determination of the equivalences is handwork,
and we therefore do not give calculations. It can be checked directly that the results are
correct. We have

Πr2

J0
∼ Πe

J1
; Πr2

J1
∼ Πe

J0
; Πr2

J2
∼ Πe

J3
; Πr2

J3
∼ Πe

J2
; (5.31)

Πr2

α ∼ Πe
α ; (5.32)

Πr
β0

' Ωr
J0
⊕Ωr

J1
; Πr

β2
' Ωr

J2
⊕Ωr

J3
; Πr

β1
∼ Πr

β3
; (5.33)

Πs
J1
∼ Πs

J0
; Πs

J3
∼ Πs

J2
; Πsr

J1
∼ Πsr

J0
; Πsr

J3
∼ Πsr

J2
. (5.34)

Here the one-dimensional representations Ωr
J j

are defined by

Ωr
J j

( f ,sqrk) = f (r)J j(s
qrk), (5.35)

where f ∈ F(D4), but ( f ,sqrk) ∈ T and J j are the regular one-dimensional D4-repre-
sentations.

We just relabel the other representations to now denote irreducible T -representa-
tions, and call Ωr

β = Πr
β1
|
T

. This gives us (dimensions in parentheses):

Ωe
J j

(1), Ωe
α (2), Ωr

J j
(1), Ωr

β (2), Ωs
J0,2

(2), Ωsr
J0,2

(2). (5.36)

The squares of the dimensions correctly add up to 32.
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5.1.3 Probing the structure of the residual symmetry algebra

Up until now, we have regarded T as just a set of basis vectors of D(D4) that happen to
span a sub-Hopf algebra. We have not discerned a particular nice structure from which
it is clear why it is this sub-Hopf algebra that leaves |φ〉 ∈V r2

J1
invariant.

We have seen that the (J j,Erk) span the sub-Hopf algebra F(D2) ⊗̃CZ4. It turns
out that T is somehow isomorphic to two copies of this Hopf algebra, accompanied by
an element taking each element from one copy to the other. This element is (ℵ,s) ≡
(ℵ,Es) ≡ (α11 +α12,Es). Indeed we see from (5.11)-(5.14) that

(α11 +α21,Es)(J0,Erk) = (α11 +α21,Esrk), (5.37)

(α11 +α21,Es)(J1,Erk) = (α11 −α21,Esrk), (5.38)

(α11 +α21,Es)(J2,Erk) = (α22 +α12,Esrk), (5.39)

(α11 +α21,Es)(J3,Erk) = (α22 −α12,Esrk). (5.40)

The elements on the right hand side span the same space as the elements {(αab,Esrk)},
which together with (J j,Erk) span T . We have already seen that this is a subalgebra,
so the multiplication of these elements works out correctly. One can also check that
(ℵ,s)2 = (J0,e) = 1D(D4).

If we agree to always write the elements of T in the standard from

(ℵ,s)i(J j,Erk) i = 0,1; j,k = 0,1,2,3; (5.41)

so with (ℵ,s) on the left—the multiplication in not commutative, as one can read off
from (5.11)-(5.18)—we only need the indices i, j and k to describe a basis vector of T .

In fact, the whole Hopf algebra D(D4) can be written as elements of {(J j,Erk)}
multiplied by (ℵ,e), (J0,Es), or both, or neither. The Hopf algebra D(D4) can then be
thought of as four blocks, pictured by

(J0,Ee) (J0,Es)
(ℵ,e) (ℵ,s)

and {(J j,Erk)} within each block.
In fact, we see that these basis vectors form a group: each multiplication of two

such vectors gives exactly one other basis vector, with scalar factor 1. We explore this
further in chapter 6.

5.2 Confinement

The next step is finding out which of the T -representations are confined. We could
use the conditions (3.25) and (3.26) on matrix elements of representations of T , which
span a sub-Hopf algebra U ∗ of T ∗, which is then dual to the unconfined algebra U .

We are going to use a slightly different approach: we will check these conditions for
all irreducible representations of T , obtaining the unconfined representations directly,
which must be isomorphic to the irreducible representations of U (cf. §3.3.3). We will
then ‘guess’ the algebra structure of U , but we will see that it follows quite naturally.



86 Chapter 5. The Πr2

J1
-condensate in D(D4)

5.2.1 Braiding condensate particles
Projection of the R-matrix The first thing we need is the restriction to T of the
left and right tensorand of the braid matrix R

A
. Now R is defined in §2.3 on the basis

{(Ph,g)} of D(D4). We therefore need to write our elements (ℵ,s)i(J j,Erk) out on this
basis.

From the definitions of J j and α , (4.4) and (4.5), we see

Pe = 1
8 (1+ ℵ)(J0 + J1 + J2 + J3), (5.42)

Pr = 1
8 (1− ıℵ)(J0 + J1 − J2 − J3), (5.43)

Pr2 = 1
8 (1− ℵ)(J0 + J1 + J2 + J3), (5.44)

Pr3 = 1
8 (1+ ıℵ)(J0 + J1 − J2 − J3), (5.45)

Ps = 1
8 (1+ ℵ)(J0 − J1 + J2 − J3), (5.46)

Psr = 1
8 (1− ıℵ)(J0 − J1 − J2 + J3), (5.47)

Psr2 = 1
8 (1− ℵ)(J0 − J1 + J2 − J3), (5.48)

Psr3 = 1
8 (1+ ıℵ)(J0 − J1 − J2 + J3). (5.49)

With this and R
A

= ∑h(Ph,e)⊗ (J0,h) we find

(P⊗ id)(R
A

) = 1
8 ∑

i=0,1
k=0,1,2,3

(
(J0 +(−1)iJ1 +(−1)kJ2 +(−1)i+kJ3),e

)
⊗ (J0,s

irk),

(5.50)

(id⊗P)(R
A

) = 1
8 ∑

k=0,1,2,3
(1+ ıkℵ)

(
(J0 + J1 +(−1)kJ2 +(−1)kJ3),e

)
⊗ (J0,r

k).

(5.51)

We calculate the values of the counit on the left and right projected tensorands:
(
1(ε ◦P)⊗ id

)
(R

A
) = 1

8 4⊗
(
J0,(e+ r2)

)
, (5.52)

(
id⊗1(ε ◦P)

)
(R

A
) = 1

8 ∑
k=0,1,2,3

(1+ ıkℵ)
(
(J0 + J1 +(−1)kJ2 +(−1)kJ3),e

)
⊗1.

(5.53)

Imposing the confinement conditions Now we can check the conditions for uncon-
fined particles, (3.22), which reduce to (using Πr2

J1
(sirk) = (−1)i):

1
8 ∑

i=0,1
k=0,1,2,3

Ω
(
(J0 +(−1)iJ1 +(−1)kJ2 +(−1)i+kJ3),e

)
⊗ (−1)i|φ〉 = Ω(1)⊗|φ〉,

(5.54)
|φ〉⊗Ω(J0,r

2) = |φ〉⊗Ω(1). (5.55)

From the second condition, we see that any ΩB
β that doesn’t have β (r2) = 1 is confined.

This is true for Ωe
α and Ωr

β . The first condition imposed on Ωs,sr
J0,J2

leads to a difference
of a minus sign between right and left hand sides, so these particles are confined as
well.

This leaves only the Ωe
J j

and Ωr
J j

as unconfined particles. These eight representa-
tions are all one-dimensional, so U should be eight-dimensional.
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Hopf algebra structure Let’s now look at the values of these representations on the
basis vectors of T . Because representations satisfy the algebra multiplication rule, we
can distinguish between those elements, as mentioned before, by elements that do or
do not contain a factor (ℵ,s). Ignoring the representation values on that element for a
while, we have

Ωe
J′j

(J j,Erk) = J j′(r
k); Ωr

J
j′
(J j,Erk) = J j(r)J j′(r

k). (5.56)

We immediately see that, fixing k, the elements (J0,Erk) and (J1,Erk) give the same
representation values for every representation ΩB

β . Similary (J j,Ee) and (J j,Er2) for
fixed j give identical representation values. We then define the surjective Hopf mor-
phism Γ : T → U of §3.3.3 by

Γ : (J0,1,Erk) 7→ (J0,Erk mod 2), (J2,3,Erk) 7→ (J2),Erk mod 2). (5.57)

It is not hard to check that this is indeed a morphism. Then the unconfined algebra is
spanned by

U = {(ℵ,s)i(J j,Erk)} i,k = 0,1; j = 0,2; (5.58)

where the elements (J j,r
k) represent equivalence classes

{(J j,Erk),(J j+1,Erk),(J j,Erk+2),(J j+1,Erk+2)}, (5.59)

in agreement with (5.57).

5.2.2 Braiding
The Hopf algebra U is obviously not isomorphic to a quantum double, because its
dimension is not the square of an integer. However, we do want to have a description
of braiding of unconfined particles, so we need to obtain the universal R-matrix by
some other method.

The braiding in U should correspond to the braiding in A , and we mentioned
earlier (§3.3.2), that we should use the projection of A onto T and then use Γ to go to
U .

We then find

R
U

= 1
2

(
(J0 + J2,Ee)⊗ (J0,Ee)+(J0 − J2,Ee)⊗ (J0,Er)

)
. (5.60)

Comultiplication in U To check whether this element indeed constitutes a valid
universal R-matrix, we need the comultiplication on U , which we can determine by
using Γ⊗Γ on the comultiplication of T on an element of U , which we consider as
an element of T by choosing a representative of each equivalence class (5.59) by the
obvious choice

(J j,E
k
r ) ∈ U  (J j,E

k
r ) ∈ T . (5.61)

For (J j,Erk) the comultiplication is trivial (5.19), and this is carried over to U . For
(ℵ,s) we find from (5.21) and (5.23):

∆
T

(ℵ,s) =∆(α11,Es)+∆(α22,Es)

=(α11,Es)⊗ (α11,Es)+
(
α12,Es)⊗ (α21,Es)+

(α22,Es)⊗ (α21,Es)+(α21,Es)⊗ (α11,Es)

=(ℵ,s)⊗ (ℵ,s) 1
2(J0 + J1,Ee)+(ℵ,s)(J2,Ee)⊗ (ℵ,s) 1

2(J0 − J1,Ee).
(5.62)
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Now, when going over to U by Γ the second term drops out, which gives us

∆
U

(ℵ,s) = (ℵ,s)⊗ (ℵ,s). (5.63)

So the comultiplication is trivial for all elements (recall from §2.2.4 that the comulti-
plication in a bialgebra is an algebra morphism).

Non-trivial braiding despite cocommutativity Before we check that the expression
in (5.60) is indeed a universal R-matrix, we note that when this is the case, we have
found a non-trivial braiding for a Hopf algebra with a trivial coproduct. It is known
that the universal R-matrix does not have to be unique, even when the Hopf algebra
is cocommutative. For example the universal R-matrices for the group algebra a finite
Abelian group were classified† in [42], and for cocommutative Hopf algebras (so when
the comultiplication is trivial) such structures are explored in [14].

Quasi-triangularity conditions The element R of (5.60) is its own inverse. We cal-
culate the quasi-cocommutativity condition for ∆(J j,Erk):

R∆(J j,Erk)R
−1 = 1

2

(
(J0 + J2,Ee)⊗ (J0,Ee)+(J0 − J2,Ee)⊗ (J0,Er)

)
×

(
(J j,Erk)⊗ (J j,Erk)

)
R−1

=∆(J j,Erk)RR−1 = ∆op(J j,Erk). (5.64)

For the calculation for ∆(ℵ,s) we use that the product (J0,r)(ℵ,s) = (α11,sr3)−
(α12,sr3) = (ℵ,sr3)(J1,e) in T reduces to (ℵ,s)(J0,r) in U . With this one can see
that R commutes with (ℵ,s) and obeys quasi-commutativity.

The other quasi-triangularity conditions are also satisfied:

(∆⊗ id)(R) = 1
2 (J0 + J2,Ee)⊗ (J0 + J2,Ee)⊗ (J0,Ee)+

1
2 (J0 − J2,Ee)⊗ (J0 − J2,Ee)⊗ (J0,Er). (5.65)

R13R23 = 1
4

(
(J0 + J2,Ee)⊗ (J0,Ee)⊗ (J0,Ee)+(J0 − J2,Ee)⊗ (J0,Ee)⊗ (J0,Er)

)

×
(
(J0,Ee)⊗ (J0 + J2,Ee)⊗ (J0,Ee)+(J0,Ee)⊗ (J0 − J2,Ee)⊗ (J0,Er)

)

= 1
4

(
(J0 + J2,Ee)⊗ (J0 + J2,Ee)+(J0 − J2,Ee)⊗ (J0 − J2,Ee)

)
⊗ (J0,Ee)

+
(
(J0 + J2,Ee)⊗ (J0 − J2,Ee)+(J0 − J2,Ee)⊗ (J0 + J2,Ee)

)
⊗ (J0,Er)

= 1
2 (J0 + J2,Ee)⊗ (J0 + J2,Ee)⊗ (J0,E2)+

1
2 (J0 − J2,Ee)⊗ (J0 − J2,Ee)⊗ (J0,Er). (5.66)

The calculation for (id⊗∆)(R) = R13R12 is similar.

Obtaining R
U

from R
A

At this point, we should remark that the universal R-matrix
obtained here is (Γ⊗Γ) ◦ (P⊗P)(R

A
). If we had chosen the orthogonal projection

of R from A on U , by considering U as a subset according to (5.61), then we would
have found

(P
U
⊗P

U
)(R

A
) =

1
8
(
(J0 + J2,Ee)⊗ (J0,Ee)+(J0 − J2,Ee)⊗ (J0,Er)

)
, (5.67)

†The author of this article does not, however, prove that every R-matrix for such an algebra falls within
this classification.



5.3. Summary 89

which is 1
4 times the R obtained by Γ. Then the quasi-triangularity conditions (∆⊗

id)(R) = R13R23 and (id⊗∆)(R) = R13R12 are no longer satisfied.
This can be fixed, however, by replacing (5.61) by

(J j,E
k
r ) ∈ U  

1
4 (J j,E

k
r ) ∈ T . (5.68)

So the matter whether we should use the Hopf map Γ or some projection to obtain the
universal R-matrix for U is still unresolved, although Γ seems to automatically give
the right solution, whereas for the projection a specific choice is required.

5.2.3 Domain walls
The domain walls are characterized by a Hopf kernel of Γ. We calculate the right Hopf
kernel, defined by (3.34):

(id⊗Γ)∆(J j,Erk) = (id⊗Γ)
(
(J j,Erk)⊗ (J j,Erk)

)
. (5.69)

Using (5.57), this is only identical to (J j,Erk)⊗1 = (J0,Ee) if j = 0,1; r = 0,2.

(id⊗Γ)∆(ℵ,s) = (id⊗Γ)
(
(ℵ,s)⊗ (ℵ,s)

)
. (5.70)

This can never be equal to (ℵ,s)⊗ (J0,Ee).
So we find that RKer(Γ) is spanned by {J0,1Er0,2}, and is therefore isomorphic (as

an algebra) to F(Z2)⊗CZ2. Its four one-dimensional representations are labelled by
(J0,1,γ0,1).

Restrictions of T -representations We can determine to which of these represen-
tations the particles in the condensate correspond, by looking at their values on the
restriction of T to RKer(Γ). The unconfined particles of course correspond to (J0,γ0),
and for the others we find:

Ωe
α 7→ (J0,γ1) Ωr

β 7→ (J0,γ1)

Ωs,sr
J0

7→ (J1,γ0) Ωs,sr
J2

7→ (J1,γ1). (5.71)

5.3 Summary
In this chapter we calculated the structure of the residual symmetry algebra T and the
unconfined algebra U , along with their representations and branching rules thereof, for
one particular condensate of one particular quantum-double-symmetric theory. Still,
this calculation was quite elaborate, and does not generalize easily to other condensates
or other quantum doubles.

It is however a good example of the richness of the residual symmetry, even though
we started out with the group D4, which has only eight elements. It also illustrates
nicely that dyonic condensates may allow for larger residual symmetry than one might
naively expect. In this case, T was twice as large as just the tensor product of the
unbroken magnetic and electric parts, see the first paragraph of this chapter and §5.1.3.

We have also seen that the issue raised in §3.3.3 of how to define a proper braid
matrix for the unconfined algebra, has been clarified to some extent. It is most likely
that first projecting the universal R-matrix of A to T and then carrying over to U by
Γ will give correct results. However, this is still open to verification or proof.



Chapter 6

Group algebra structure

As we have already mentioned, by choosing the basis {(ρab,Eg)} for D(D4), the mul-
tiplication of two basis vectors gives exactly one other basis vector, and they there-
fore have the structure of a semigroup. The basis vector (J0,Ee) is a left and right
identity for this multiplication, turning it into a monoid. Furthermore, each element
(J j,Erk) has a left and right inverse element by (J j,Er−k), (J0,Es) is its own inverse
and (ℵ,e)4 = (J0,Ee).

Therefore this basis has the structure of a finite group. Another way of saying
the same thing is stating that D(D4) is isomorphic to the group algebra of some finite
group as an algebra, but certainly not as a Hopf algebra; for instance, D(D4) is not
cocommutative.

We immediately face two questions: do other quantum doubles possess such a nice
basis? And does this lead to new physical insights for this model? Unfortunately, both
of these questions have to be answered mainly negatively. We will explain this a little
further in the next few pages. But let us first look more closely at the group structure
of this basis.

6.1 D(D4) as a group algebra

The multiplication of D(D4) is of course given by construction, and the multiplication
on the basis {(ρab,Eg)} was determined in §5.1.1-5.1.3. We will now write it in a more
suggestive notation to obtain a group.

Rewriting elements of D(D4) Firstly, we see that the matrix elements of the repre-
sentations of CD4 correspond to:

J0 =
3

∑
p=0

(Prp +Psrp) J1 =
3

∑
p=0

(Prp −Psrp)

J2 =
3

∑
p=0

(−1)p(Prp +Psrp) J3 =
3

∑
p=0

(−1)p(Prp −Psrp)

ℵ = α11 +α21 =
3

∑
p=0

ıp(Prp +Psrp). (6.1)

90
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We can ignore the case of J3 by writing it as the product J1J2.
We must also deal with the twisted multiplication of the quantum double (2.4). For

D(D4), this amounts to the following interchanging rules:

(J0,Es)(ℵ,e) = (ℵ,e)(J2,Ee)(J0,Es), (6.2)
(J0,Er)(ℵ,e) = (ℵ,e)(J1,Ee)(J0,Er). (6.3)

Other combinations can either be obtained from these or are commutative.
Finally, note that (J2,Ee) = (ℵ,e)2 which one can confirm by writing this out on

the (Ph,g) basis:

(ℵ,e)2 =
( 3

∑
p=0

qp(Prp +Psrp),Ee
)2

=
( 3

∑
p=0

(ı2)p(Prp +Psrp),Ee
)

= (J2,Ee). (6.4)

The group G4 This leads us to the following construction. Let G4 be the group with
four generators r,s,a and d and the relations (the unit element is denoted by 1)

r4 = 1 s2 = 1 a4 = 1 d2 = 1, (6.5)

rs = sr−1, (6.6)
ra = dar, (6.7)
rd = dr, (6.8)

sa = a−1s, (6.9)
sd = ds, (6.10)
ad = da. (6.11)

Then every element can be written in the form

dia jrksl j,k = 0,1,2,3; i, l = 0,1. (6.12)

and G4 has 64 elements. This group does not fall in a general class of groups, but can
be seen as an extension of D4: it is a semidirect product (Z4 ×Z2)o D4 (cf. §6.3.1).

Correspondence between CG4 and D(D4) The group algebra CG4 is isomorphic as
an algebra to D(D4) by the following correpondences

rk 7→ (J0,Erk),

s 7→ (J0,Es),

a j 7→
( 3

∑
p=0

q jk(Prp +Psrp),Ee
)
,

d 7→ (J1,Ee). (6.13)

We see that a2 corresponds (J2,Ee) and a to (ℵ,Ee). The elements r and s generate
D4, corresponding to the CD4-part of D(D4). The ‘non-trivial’ relations (6.7) and (6.9)
correspond to (6.3) and (6.2).

This group has a very large center, given by the elements {1,r2,a2,d} and all their
products. This corresponds to saying that all elements (J j,Ee,r2) are central.
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Hopf algebra structure We can now bring over all other structure from D(D4) to
CG4:

∆(r) = r⊗ r (6.14)
∆(s) = s⊗ s (6.15)

∆(ai) = 1
2

(
ai ⊗ai(1+d)+a−i ⊗ai(1−d)

)
(6.16)

∆(d) = d ⊗d, (6.17)

ε(x) = 1 ∀ basis vectors of CG4, (6.18)

S(ri) = r−i, (6.19)
S(s) = s, (6.20)

S(ai) = a−i(1+d)+ai(1−d), (6.21)
S(d) = d. (6.22)

Using
Psqrp =

(
1+(−1)qd

)

∑
k

(−ı)pkak (6.23)

the universal R-matrix ∑h(Ph,e)⊗ (1,h) can be rewritten:

R = ∑
p,k

(−ı)pk((1+d)ak ⊗ rp +(1−d)ak ⊗ srp). (6.24)

So we see that this group algebra can be equipped with non-trivial coproduct, antipode
and braiding, instead of the trivial structures as mentioned in chapter 2. This raises of
course many questions, which we are mostly unable to answer. In the literature, we
have not found any other cases comparable to this occurence. In fact, mathematicians
prefer to invert the reasoning, saying that this non-trivial Hopf algebra has a special
basis, so that the basis vectors possess a group structure. We shall also see that this
does not generalize to D(Dn) with n > 4.

Furthermore, it is not clear whether this leads to special properties of the physical
model it describes.

6.2 Correspondence between Gn and D(Dn)

In the previous section we found that we could find a basis on D(Dn) such that the basis
vectors form a group Gn. Now we are going to look if we can do the same thing for
larger n, n still even.

Let’s take another look at the twisted multiplication, which is after all the most
important and defining property of the quantum double. For general n, the commutation
relation between a =

(

∑n
p=0 qk(Prp +Psrp),Ee

)
and r = (J0,Er) is given by

(J0,Er)
( n

∑
p=0

qk(Prp +Psrp),Ee
)

=
( n

∑
p=0

qk(Prp +Psrp−2),Ee
)
(J0,Er)

=
( n

∑
p=0

(Prp +q2Psrp),Ee
)( n

∑
p=0

qk(Prp +Psrp),Ee
)
(J0,Er), (6.25)
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so the interchange of a and r introduces a central element
(

∑n
p=0(Prp + q2Psrp),Ee

)
.

When n = 4, q2 = −1 and this element takes a particularly nice form, which enabled
us to identify it with J1 in (6.13). For general n this can only be done in the following
way: define the element of D(Dn)

δ ≡
( n

∑
p=1

(Prp +qPsrp),Ee
)
. (6.26)

Here as before q ≡ e2πı/n. We define the group Gn of dimension 2n3 by the generators
r,s,a,δ and relations of (6.5)-(6.11), but now with δ n = 1 and (6.7) replaced by

ra = δ 2ar. (6.27)

The element d = ∑p Prp −Psrp now corresponds to the element δ n/2, which is why we
had to define δ with the value q rather than q2 as we did for d in (6.13): n/2 may be
odd. Please note that the group G4 of the previous section is isomorphic to the group
G4 defined here with the subgroup {1,δ} divided out.

Now one may hope that, when turning this group into an algebra CGn it will be
isomorphic to D(Dn). However, this is immediately contradicted by looking at the
dimensions, 2n3 for Gn and 4n2 for D(Dn)

†.

We can, however, provide a surjective homomorphism fn : CGn → D(Dn) by

r 7→ r,

s 7→ s,

a 7→ a,

δ i 7→ 1
2 (1+qi +d −qid), (6.28)

where the elements of the right hand side correspond to the definitions of (6.13). The
kernel of this map is

{(rxsyaz)
(
(δ k −1)(d +1)

)
} ∪ {(rxsyaz)

(
(δ k −qk)(d −1)

)
}

k = 1, . . . , n
2 −1 ; x,z = 0, . . . ,n−1 ; y = 0,1 (6.29)

which has dimension 2n2(n−2), so that dim(CGn) = dim
(
D(Dn)

)
+dim(ker fn).

In the next section we determine the irreducible representations of Gn, and it is then
also shown that the ones that factor over this morphism are in one-to-one correspon-
dence with the irreducible representations of D(Dn).

†Actually, these dimensions are equal for n = 2, but D2 is Abelian, and it is already known that the
quantum double of every finite Abelian group is isomorphic as an algebra to a group algebra. This description
does not give this group algebra, however, as the element δ is central, and does not show up in any group
relation.
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The rest of the braided Hopf algebra structure is given by

∆(r) = r⊗ r

∆(s) = s⊗ s

∆(ai) =
1
2
(
ai ⊗ai(1+d)+a−i ⊗ai(1−d)

)

∆(δ i) =
1
2
(
dδ i ⊗δ i +(−1)i+1δ−i)+δ i ⊗ (δ i +(−1)iδ−i)

)

ε(x) = 1 ∀ basisvectors of CGn

S(ri) = r−i

S(s) = s−1

S(ai) = a−i(1+d)+ai(1−d)

S(δ i) = δ i.

Analogy for n odd The group Gn is well-defined for any positive integer n, but the
surjection onto D(Dn) makes explicit use of the element d = δ n/2. This element does
not exist, of course, when n is odd.

We can, however, formulate the surjection in another way, by making use of the
fact that the sum of the n-roots of unity add up to zero†. Recall that the element d
represented the D(Dn) element ∑p

(
(Prp −Psrp),e

)
. We calculate

n−1

∑
i=0

δi 7→ ∑
p,i

(
(Prp +qipPsrp),e

)
= ∑

p
n(Prp ,e). (6.30)

With (1,e) = ∑p
(
(Prp +Psrp),e

)
we find

d −1 ≡
2
n

n−1

∑
i=0

δi −1 7→
2
n

n∑
p

(Prp ,e)−∑
p′

(
(P

rp′ +P
srp′ ),e) = ∑

p

(
(Prp −Psrp),e).

(6.31)
So with this new definition of d all equations that were introduced above are valid
also for odd values of n. Note that d does reduce to δ n/2 when n is even, because
q0 +qn/2 = 0, so the sum of all roots of unity these two must be zero as well.

D(Dn) is not isomorphic to a group algebra We return to the question posed at
the beginning of this chapter: are there quantum doubles that are isomorphic to a group
algebra? Although we have found some relation to a group algebra in what is discussed
above, it has not added much information or insight into the quantum double structure.
As n is chosen larger, the difference in dimensions between CGn and D(Dn) increases
linearly with n. A surjection onto an algebra from a much larger algebra is in most
cases not very useful to explore that algebra’s structure.

†This can be easily seen by multiplying ∑i qi by the non-zero factor (q− 1): ∑i(q
i+1 − qi) = ∑i(q

i −
qi) = 0.
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However, through this construction we are able to define a non-trivial comultipli-
cation and non-trivial braiding for a large family of non-Abelian groups. Were we to
find a physical model exhibiting symmetry according to such a group, then perhaps
it would show interesting braid statistics as well. Still, these groups, although having
connections to the dihedral groups, seem up until now mathematical possibilities with
no direct physical consequences.

It does provide a way, however, to determine the irreducible representations of
D(Dn) by other means (§6.3.2), but as the original representation theory is not very
hard, this is of no practical use. All in all the description with the group Gn seems to
fail to expand the knowledge of D(Dn).

It is desirable to know whether D(Dn) for other values of n permit a basis that
forms a group at all. It is not a straightforward task to find out what that basis should
look like. We can make use, though, of the fact that the irreducible representations
of a group algebra are given by the irreducible representations of that group. These
representations can be calculated on a computer, and we can compare some of their
properties to those of irreducible representations of D(Dn). In particular, we can look
at the number of representations and their dimensions.

Using the computer program GAP with the code listed in appendix B, we have
calculated the dimensions of the irreducible representations of all groups of dimension
4n2 for n = 5, . . . ,20, with the exception of n = 8,16, because the number of groups of
dimensions 256 and 1024 is very large. It turns out that for these n, there are no groups
with the right number of representations of the right dimensions, so we cannot hope to
find any group algebra that is isomorphic (as an algebra) to D(Dn).

6.3 Irreducible representations of CGn

In this section, we will construct the irreducible (algebra) representations of our group
algebra CGn. This is done by the use of induced representations, through a method by
Serre [43, §8.2] which is laid out in the appendix §A.5.

We then use this mechanism to work out the details for our group Gn, for n even.
Subsequently we show how the irreducible representations of D(Dn) are related to
those of Gn.

6.3.1 Irreducible representations of Gn

We are going to apply the method developed in §A.5 to our group Gn. Firstly, we must
show that this group is a semidirect product by an Abelian group. Recall that our group
is given by the elements {d ia jrksl | i, j,k = 0, . . . ,n−1 ; l = 0,1}. Using the relations
(6.5)-(6.11) and (6.27), we see that the subgroup generated by d and a form the Abelian
group Zn ×Zn, and the subgroup generated by r and s form the group Dn. We show
that Gn ' (Zn ×Zn)o Dn.

(dia j,rksl) · (d paq,rxsy) = dia jrksldpaqrxsy

= dia jdprkslaqrxsy

= dia jdprkaq−2qlslrxsy

= dia jdp+2k(q−2ql)aq−2qlrkslrxsy

= (dia jdp+2k(q−2ql)aq−2ql ,rkslrxsy)
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We see that the action of Dn on Zn ×Zn is given by

rksl ⇀ dpaq = d p+2k(q−2ql)aq−2ql ∈ Zn ×Zn,

which is equal to rksldpaq(rksl)−1, so this is a regular semidirect product.
We can now use the machinery of §A.5 by identifying Zn ×Zn to A and Dn to H.

The characters of Zn ×Zn are given by

χy,z : dpaq 7→ e
i2π
n (yp+zq) y,z, p,q = 0, . . . ,n−1. (6.32)

The action of Dn on a character χy,z is given by

(rksl ⇀ χy,z)(d paq) = χy,z
(
(rksl)−1dpaqrksl)

= χy,z(dp−2qkaq−2lq)

= e
i2π
n

(
y(p−2qk)+z(q−2lq)

)

= e
i2π
n

(
py+q(z−2lz−2ky)

)

= χy,z−2lz−2ky(d
paq)

We want to know which characters χ can be reached through the action of Dn for
fixed y and z. This is an equivalence relation, and we write χ ∼ χy,z, and [χy,z] for the
corresponding equivalence class, which is the Dn-orbit of the character group X for the
element χy,z. We see that

χy,z ∼ χy,±z+2my mod n m = 0, . . . ,n−1.

Set x≡ n/2
gcd( n

2 ,y) . We propose that for fixed y there are gcd( n
2 ,y)+1 orbits represented by

χy,0, . . . ,χy,gcd( n
2 ,y), having x elements if z ∈ {0,gcd( n

2 ,y)} and 2x elements otherwise.

Proof. Disregarding the action of s, all elements in the orbit [χy,z] are of the form
χy,z+2my. As we increase m, the smallest m which does not give a new character in
this orbit is m = x. Then each orbit has x elements, evenly spaced with an interval
I = 2gcd( n

2 ,y), so that xI = n.
Because of these regular intervals, the orbits [χy,0], . . . , [χy,I−1] are distinct. Now we

include the action of s. The orbits then also comprise all elements of the form χy,−z+2my,
so χy,I−z ∼ χy,z. We see at once that we are left with the orbits [χy,0], . . . , [χy,gcd( n

2 ,y)], of
which the first and last still have x elements, and the others now have 2x elements.

Next, we wish to determine the subgroup (Dn)y,z of Dn, which leaves the character
χy,z invariant. The action of rk will leave the character invariant if 2ky = 0 mod n,
so if k is a multiple of x. Since x always divides n (n/x = 2gcd( n

2 ,y)) the subgroup
Z2gcd( n

2 ,y) = {rλx|λ = 0, . . . ,2gcd( n
2 ,y)−1} leaves χy,z invariant.

Including the action of s gives rks ⇀ χy,z = χy,−z+2ky. This is only equal to χy,z if
2ky = 2z mod n, so when yk = z mod n

2 . This will only occur if z = 0 mod gcd( n
2 ,y). In

that case, the elements {rz/gcd( n
2 ,y)+λxs} will also leave χy,z invariant, and the subgroup

will be D2gcd( n
2 ,y). Summarizing:

(Dn)y,z =

{
D2gcd( n

2 ,y) if z = 0 mod gcd( n
2 ,y)

Z2gcd( n
2 ,y) otherwise (6.33)
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Denote the irreducible representations of these groups by ρα . From §A.5, we know
that the irreducible representations of (Zn×Zn)o(Dn)y,z are given by χy,z⊗ρα . These
representations can be induced to Gn; the resulting representations θyz,ρα are irreducible
by proposition A.9, and give all irreducible representations of Gn. The dimension of
θyz,ρα is the number of cosets Gn/

(
(Zn ×Zn)o (Dn)y,z

)
times the dimension of ρα .

6.3.2 Connection with D(Dn)

We now wish to link the representations θyz,ρα of CGn to those of our original theory
of D(Dn). To do this, we have to realize the following: as CGn has a larger dimension
than D(Dn), it will have more irreducible representations, or of higher dimension, or
a combination of these. Some of these representations will not have any connection
to those of the quotient. The appropriate requirement is that, using the morphism fn :
CGn → D(Dn) of (6.28), the representations θ : CGn → GL(V ) factor over fn. By this
we mean that there is a map Π : D(Dn) → GL(V ), so that (cf. §3.3.3)

θ = Π◦ fn (6.34)

We will now show that this is the case if θ is zero on the kernel of fn, written as ker fn,
which is the subspace of CGn that is mapped to 0 ∈ D(Dn) by fn.

We firstly remark that CGn/ker fn ' D(Dn), because no two distinct non-zero ele-
ments g1,g2 ∈ CGn can map to the same element h 6= 0 of D(Dn):

fn(0CGn
) = 0D(Dn) = h+(−h) = fn(g1)+

(
− fn(g2)

)

= fn(g1)+ fn(−g2) = fn(g1 −g2)

⇒ g1 −g2 = 0 ⇒ g1 = g2.

If θ(g) = 0 ∀g ∈ ker fn, it directly defines a representation Π of D(Dn) by considering
g as a representative of CGn/ker fn, so Π

(
fn(g)

)
= θ(g) ∀g. If, on the other hand,

there is an element g ∈ ker fn for which θ(g) 6= 0, and another element g′ ∈ CGn, then
θ(g) 6= θ(g + g′) whereas Π( fn(g + g′)) = Π( fn(g)), and the above identification of
representations no longer holds.

One can also see, that through this morphism D(Dn) will be semisimple if CGn
is, which it is, and also that an irreducible represenation of CGn will be sent to an
irreducible representation of D(Dn).

Representations that factor over fn We have determined the kernel of the morphism
fn : CGn → D(Dn) in (6.29):

{(rksla j)
(
(di −1)(d

n
2 +1)

)
} ∪ {(rksla j)

(
(di −qi)(d

n
2 −1)

)
}

i = 1, . . . ,
n
2
−1 ; k, j = 0, . . . ,n−1 ; l = 0,1

Because we know that for a representation θ , θ(g1g2) = θ(g1)θ(g2), we now only
consider the values of the θyz,ρα on the parts (di − 1)(d

n
2 + 1) and (di − qi)(d

n
2 − 1):

if these are zero, products including these factors will also be zero. Furthermore, the
values of the representations will never be zero on the basisvectors r,s,a,d, as these
form a group; in other words, we can only get zero on linear combinations. So in
considering just the above factors, we will get all representations that are zero on the
kernel.
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θyz,ρα

(
(di −1)(d

n
2 +1)

)
=
(
θyz,ρα (di)−θyz,ρα (1)

)(
θyz,ρα (d

n
2 )+θyz,ρα (1)

)

= (χy,z(di)−1
)
(χy,z(d

n
2 )+1

)

= (qyi −1)(qy n
2 +1) (6.35)

θyz,ρα

(
(di −qi)(d

n
2 −1)

)
=
(
θyz,ρα (di)−qiθyz,ρα (1)

)(
θyz,ρα (d

n
2 )−θyz,ρα (1)

)

= (χy,z(di)−qi)(χy,z(d
n
2 )−1

)

= (qyi −qi)(qy n
2 −1) (6.36)

According to the statement above, the θyz,ρα must give zero on all these elements. From
(6.35) and (6.36) we then get the conditions

yi = 0 mod n ∀i ∨ y
n
2

=
n
2

mod n ⇒ y = 0 ∨ y odd and

yi = i mod n ∀i ∨ y
n
2

= 0 mod n ⇒ y = 1 ∨ y even

Combining these, we see that the only representations that factor over fn are those
for which y = 0 or y = 1.

Correspondence with D(Dn)-representations We have now found that the repre-
sentations θyz,ρα with y = 0,1; z = 0, . . . ,gcd( n

2 ,y) factor over fn. For these specific
cases, they can be given in more detail by using gcd( n

2 ,0) = n/2 and gcd( n
2 ,1) = 1.

Then from (6.33) we see that

(Dn)0,z = Dn z = 0,
n
2

(6.37)

(Dn)0,z = Zn z = 1, . . . ,
n
2
−1 (6.38)

(Dn)1,z = D2 z = 0,1 (6.39)

Furthermore, we can determine the cosets Dn/(Dn)y,z:

Dn/(Dn)0,z : [e] = Dn z = 0, n
2

Dn/(Dn)0,z : [e] = 〈r〉, [s] = s〈r〉 z = 1, . . . , n
2 −1

Dn/(Dn)1,0 : [rk] = {rk,rk+ n
2 ,srk,srk+ n

2 } k = 0, . . . , n
2 −1

Dn/(Dn)1,1 : [rk] = {rk,rk+ n
2 ,srk−1,srk−1+ n

2 } k = 0, . . . , n
2 −1

(6.40)

We can already see that these subgroups correspond to the centralizers of elements
in Dn, and the cosets correspond to those of these centralizers, which are used in the
determination of the irreducible representations of D(Dn). In particular, there is a direct
isomorphism between the representations spaces of our θyz,ρ and ΠA

α . We only need to
compare the actions of the elements.

We immediately note that the action of the elements rksl for θyz,ρ is identical to
that for ΠA

α , as the ’χy,z-part’ is not affected by these elements, and the others parts
correspond directly.

Let’s now look at the subspace of CGn generated by a and d. The action of these
elements is given by

dia j ⇀θyz,ρα
rusw ⊗ e⊗vl = rusw ⊗χy,z(di−2u ja j(1−2w))e⊗vz

= rusw ⊗qy(i−2u j)+z j(1−2w)e⊗vz (6.41)
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dia j ⇀ΠA
α

rusw ⊗vz =
n−1

∑
p,q=0

(δrp +qiδsrp)
(
q jq(δrq +δsrq)

)
⇀ rusw ⊗vz

=
n−1

∑
p=0

(q jpδrp +qi+ jpδsrp) ⇀ rusw ⊗vz

=
n−1

∑
p=0

(q jpδrp,swrugAr−usw +qi+ jpδsrp,swrugAr−usw)rusw ⊗vz

= q jγ(1−2w)+β
(

i−2 ju(1−2w)
)

rusw ⊗vz gA = sβ rγ (6.42)

Now, if β = 1, then A is either the conjugacy class [s] or [sr], and the coset represen-
tatives of the centralizers of these are the ru, so w = 0. Then we see the following
correspondence by comparing the values of θyz,ρα and ΠA

α :

θ00,ρα
↔ Πe

α (6.43)

θ0 n
2 ,ρα

↔ Πr
n
2

α (6.44)

θ0z,ρα
↔ Πrz

α z = 1, . . . ,
n
2
−1 (6.45)

θ10,ρα
↔ Πs

α (6.46)

θ11,ρα
↔ Πsr

α (6.47)
(6.48)

6.4 Summary
In this section we showed that the quantum double of D4 allows for a basis so that the
basis vector form a group under the algebra multiplication. This is not true, however
for many, and probably all, other dihedral groups (except for the Abelian groups D1
and D2).

These calculations did lead to a family of groups, the groups algebras of which can
be equipped with a non-trivial braided Hopf algebra structure. This is certainly interest-
ing, but does not immediately yield physical insight. But perhaps future investigations
may show that other, more physical, group algebras have non-trivial comultiplication
as well.

Because this family of groups was constructed from the group algebra of the dihe-
dral groups, we were able to determine its irreducible representations by an induction
method. Perhaps such properties should be taken into consideration when looking for
non-trivial comultiplication on group algebras.
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Conclusions

The formalism developed in [7] to describe the symmetry breaking of theories with
Hopf symmetry has been applied to the quantum double of even dihedral groups. To-
gether with the work of cited paper and [5], most of the condensates of quantum dou-
bles of finite subgroups of SO(3) have been worked out.

As one would have expected, the most interesting or new phenomena arise in situ-
ations with magnetic and dyonic condensates, as those are not treated to such extent by
other theories. Because the Hopf symmetry description does not really distinguish be-
tween topological and fundamental charges, the procedure for calculating the particle
spectrum after condensation and subsequent confinement is the same for all types of
condensates. The electric and magnetic sector do provide, however, some simplifying
general properties.

In particular, there are many options for taking magnetic condensates, as the mag-
netic sector is organized in conjugacy classes. The class sum provides a gauge invariant
solution, but we may also choose pure flux condensates, or certain sums of fluxes, as
long as they satisfy the trivial self-braiding condition (§4.4.4).

When the consendate leaves a residual symmetry of the form F(H/K) ⊗̃CN, the
calculations, although requiring ample bookkeeping, are straightforward. This gives
hope that generalizations to for instance quantum doubles of continuous groups are
also within reach.

If the condensate does not reduce to this form, which happens for some dyonic con-
densates, such as the one worked out in chapter 5, there is no general way to determine
condensates and confinement, although they can be calculated by hand. In any case the
residual symmetry algebra always has F(H/K) ⊗̃CN as a sub-Hopf algebra, but may
be larger. Perhaps the special properties of Hopf algebras, such as lemma A.5 will lead
to a general description for all types of condensates.

It is remarkable that D4, a group of only eight elements, has such a rich structure
when the quantum double construction followed by symmmetry breaking is applied.

Throughout this work, some observations have been made. Firstly, on the basis of
the experience of §§3.3.2,5.2.2, we would like to conjecture that in general the pre-
scription for braiding of unconfined particles (representations of U ) should be given
by

R
U

= (Γ⊗Γ)◦ (P
T
⊗P

T
)R

A
, (7.1)

the universal R-matrix obtained by projecting the universal R-matrix of the original
algebra onto the residual symmetry algebra, and then carrying it over to the unconfined
algebra by the Hopf map Γ.
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Secondly, the D(D4)-theory is of a particular interesting form, because its basis can
be chosen in such a way that it forms a group. The braiding is non-trivial, however,
and remains so even in the unconfined algebra of the Πr2

J1
-condensate. Unfortunately,

this group structure is not present in most quantum doubles, nor does it seem to have
a direct physical consequence, apart from the non-trivial braiding given by the quan-
tum double description. We showed more generally that all quantum doubles of even
dihedral groups are Hopf quotients of a certain group algebra, so that its irreducible
representations can be determined in this way.

Outlook There is still a lot of unexplored territory concerning these Hopf symmetric
models. For quantum doubles of finite groups, such as treated in this thesis, the main
open issue is finding a general form for the residual symmetry algebra and the confined
algebra. The rapid development of the theory of Hopf algebras may be of use; for
instance, there is much recent work on the classification of finite-dimensional Hopf
algebras.

Another important question is whether the unconfined algebra always possesses an
R-matrix related to the one of the original symmetry algebra, and whether it is of the
form (7.1). It is our belief that in order to give an answer to this, one first has to know
more of the structure of the residual symmetry algebra.

Apart from these unresolved issues, one can try to generalize this formalism to
related structures. The particle spectrum, tensor products and braiding have been
worked out for quasi-quantum doubles, abandoning coassociativity (see p.103), in [51,
§§2.5,3.1], and for quantum doubles of locally compact (infinite) groups in [34]. Con-
formal field theory has connections with quantum groups (Hopf algebras) other than
quantum doubles, and the way in which these describe braiding and fusion properties
for quantum Hall systems has been treated in [44].

The aspect of symmetry breaking has not been touched by these papers, and in
order to do so, one has to take precautions to circumvent problems when dropping for
example coassociativity, the closedness of the coproduct when taking a subalgebra or
finite-dimensionality, from the definition of the residual symmetry algebra of §3.2.1.

And then we are left with the question: “Now that we have all these Hopf symmet-
ric models, where can they be applied?” Although discrete gauge theories originated
from high-energy physics, condensed matter systems may be more suitable for this
description, as the vacua or groundstates, which might be described as resulting from
spontaneous symmetry breaking, found in that area are far more diverse. For example
the disclinations and dislocations in crystals and liquid crystals are the kind of topo-
logical defects that lend themselves to be treated by the Hopf symmetry description
[5, 32].

There is much recent work concerning fractional statistics (representations of a
truncated braid group) in condensed matter systems. Claims have been made that frac-
tional (Abelian) statictics of Laughlin quasiparticles in a fractional quantum Hall fluid
has been directly observed [10]. A proposal on how to detect the suspected non-Abelian
statistics in the ν = 5

2 fractional quantum Hall state is posed in [8]. Furthermore, there
are many proposals for models showing non-Abelian statistics (e.g. [18, 41]).

Hopf symmetry is to be found as well in quantum liquid crystals. I will be work-
ing with professor Jan Zaanen in Leiden to look at symmetry breaking in the models
developed in [54] (see also [32]).



Appendix A

Background material

A.1 Mathematical definitions

In this section we define some of the mathematical constructs used in this thesis, with
the purpose as a quick reference for physicists not very familiar with these terms. It is
not at all comprehesive. For more information on quantum groups one can for instance
consult [20], or for a physical point of view [30].

Homomorphism Considering two instances of a mathematical construct, we can de-
fine a map between them, which is called a (homo)morphism if it respects all their
structure. For example a linear map between vector spaces is a vector space morphism,
as it respects addition, distributive scalar multiplication et cetera. It is usually clear
what structure is referred to, but we will define all relevant morphisms.

Algebra An algebra A is a vector space over a field k, for which we shall always take
C, with a bilinear multiplication µ : A⊗A → A. We usually denote ab ≡ µ(a,b).

A unit 1 is an element for which 1a = a1 = a ∀a ∈ A. This is equivalent to
introducing a map η : k → A, with η(λ ) commuting with every element in A.

The multiplication is called associative if a(bc) = (ab)c ∀a,b,c ∈ A. We always
say algebra for an associative unital algebra.

Ideals and simplicity A left ideal I of an algebra A is a subset of A such that aI ∈
I ∀a ∈ A. A right ideal I′ satisfies I′a ∈ I′ ∀a ∈ A. A two-sided ideal is both a left and
a right ideal.

An algebra A is called simple if it has no two-sided ideals other than {0} and A
itself.

An algebra A is called semisimple if it has no two-sided nilpotent ideals other than
{0}. A semisimple algebra can be written as a direct sum of simple algebras.

Group algebra The group algebra CG of a group g is an algebra in which all basis
vectors are labeled by group elements, and the multiplication is given by the group
multiplication.
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Function algebra With the name function algebra, we denote the algebra F(G) of
linear functions on the group G into C. A convenient basis is the set {Pg | g ∈ G} for
which Pg(h) = δg,h ∀g,h ∈ G. The multiplication is given by PgP′

g = δg,g′Pg. The unit
is ∑g Pg.

The function algebra is dual to the group algebra, in the sense that its vector space
is the dual vector space, its multiplication is derived from the comultiplication of the
group algebra, and vice versa.

Algebra morphism An algebra morphism is a map φ : A → B, where A and B are
algebras, for which φ(aa′) = φ(a)φ(a′) and φ(a+a′) = φ(a)+φ(a′) ∀a,a′ ∈ A. This
implies 1B = φ(1A).

Module A module comprises what physicists commonly refer to as a representation.
Let A be an algebra. A left A-module M is a vector space† and a bilinear map A⊗M →
M, called the action, denoted by (a⊗m) 7→ a ⇀ m such that

a ⇀ (a′ ⇀ m) = (aa′) ⇀ m ∀a,a′ ∈ A, m ∈ M. (A.1)

A right A-module is defined analogously, but now with a map M ⊗A → M. In the
text we often say “module” when we mean “left module”, adhering to the physicist’s
convention of acting to the right by a group.

We write M to mean both the vector space and the map. We introduce this as it
is sometimes more convenient to speak of “the module” instead of “the represenation
space of a representation”.

A submodule S is a subspace of an A-module such that aS ∈ S ∀a ∈ A. This
corresponds to an invariant subspace of a representation.

A simple module is a module having no other submodules than {0} and the module
itself. This corresponds to an irreducible representation.

A semisimple module is a module that is a direct sum of simple modules. This cor-
responds to a completely reducible representation. It can be shown that every module
of a semisimple algebra is semisimple.

Coalgebra A coalgebra C is a vector space over a field k with two linear maps called
the comultiplication or coproduct ∆ : C → C ⊗C and counit ε : C → k. We demand
coassociativity:

(∆⊗ id)◦∆ = (id⊗∆)◦∆, (A.2)

and counitality:
(ε ⊗ id)◦∆ = id = (id⊗ ε)◦∆. (A.3)

We can regard a coalgebra as a structure dual to an algebra, where ∆ is dual to µ ,
and ε dual to η . See, however, the definition of a bialgebra.

Sweedler notation The coproduct of a vector will in general be a linear combination
of tensor products of vectors. We write this compactly as

∆(c) = ∑
(c)

c′⊗ c′′. (A.4)

It is assumed that this stands for a combination with as few terms as possible.
†Some mathematics textbooks begin by defining a module over a ring and then define a vector space as a

module over a field. As most physicists are more familiar with vector spaces, we do it the other way around.
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Cocommutativity A coalgebra C is called cocommutative if

∆(c) = ∆op(c) ≡ (τ ◦∆)(c) ∀c ∈C, (A.5)

where τ is the flip, interchanging the two tensorands in a tensor product.

Coalgebra morphism A coalgebra morphism is a map φ : C → D, where C and D
are coalgebras, for which

(φ ⊗φ)
(
∆C(c)

)
= ∆D

(
φ(c)

)
and εC(c) = εD

(
φ(c)

)
, (A.6)

∆(c+ c′) = ∆(c)+∆(c′) and ε(c+ c′) = ε(c)+ ε(c′). (A.7)

Please note that if ∆(c) = c⊗ c, then ∆(c+ c′) 6= (c+ c′)⊗ (c+ c′), but c⊗ c+ c′⊗ c′.

Bialgebra A bialgebra A is a vector space with compatible algebra and coalgebra
structure. This means that µ and η are coalgebra morphisms, or equivalently ∆ and ε
are algebra morphisms. This implies

∆(ab) = ∆(a)∆(b) and ε(ab) = ε(a)ε(b), (A.8)
∆(1) = 1⊗1 and ε(1A) = 1k. (A.9)

Bialgebra morphism A bialgebra morphism is a map φ : A → B, where A and B are
bialgebras, where φ is an algebra morphism and a coalgebra morphism for its respective
structures.

Hopf algebra A Hopf algebra H is a bialgebra with a map S : H → H, called the
antipode, for which, using the Sweedler notation,

∑
(a)

a′S(a′′) = ∑
(a)

S(a′)a′′ = ε(a)1 (A.10)

The antipode is an anti-algebra morphism and an anti-coalgebra morphism, i.e.

S(ab) = S(b)S(a) and (S⊗S)
(
∆(a)

)
= ∆op(S(a)

)
(A.11)

Furthermore S(1) = 1 and ε ◦S = ε .

Hopf algebra morphism A Hopf (algebra) morphism is a bialgebra morphism φ :
A → B, for which φ ◦SA = SB ◦φ .

Quasi-cocommutativity A bialgebra A is called quasi-cocommutative if there exists
an invertible element R ∈ A⊗A, called the universal R-matrix such that

∆op(a) = R∆(a)R−1 ∀a ∈ A. (A.12)

One could say that the degree of non-cocommutativity of A is determined by the man-
ner in which R deviates from 1⊗1.
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Quasi-triangularity, braided Let {A,R} be a quasi-commutative bialgebra. If we
write R = ∑k Rk

l ⊗Rk
r then by Ri j, i, j = 1,2,3 we mean a tensor product of three factors,

where the Rk
l are placed at the i-th position, the Rk

r at the j-th position and the other
factor is always 1. For example R32 = ∑k 1⊗Rk

r ⊗Rk
l .

Now {A,R} is called quasi-triangular or braided if

(∆⊗ id)(R) = R13R23 (A.13)
(id⊗∆)(R) = R13R12 (A.14)

A cocommutative bialgebra is braided with R = 1⊗1.

Yang–Baxter equation An isomorphism of vector spaces φ :V ⊗V →V ⊗V is called
an R-matrix if it satifies the Yang–Baxter equation

(φ ⊗ id)(id⊗φ)(φ ⊗ id) = (id⊗φ)(φ ⊗ id)(id⊗φ) (A.15)

The universal R-matrix of a quasi-triangular bialgebra can be shown to satisfy

R12R13R23 = R23R13R12. (A.16)

This property leads to solutions of the Yang–Baxter equation for every module of this
bialgebra [20, §VIII.3].

Ribbon algebra A ribbon algebra is a braided Hopf algebra (H,R) with an element
c ∈ H, which satistfies (τ is the flip, see (A.5))

∆(c) =
(
τ(R)R

)−1
(c⊗ c) (A.17)

ε(c) = 1 (A.18)
S(c) = c (A.19)

Quantum double The quantum double is a construction by Drinfeld [17], which
yields a non-commutative, non-cocommutative braided Hopf algebra out of any Hopf
algebra. We give the definition of the quantum double of a finite-dimensional group
algebra.

Let H be a finite group with unit e. Then D(H) ≡ D(CH) is called the quan-
tum double of H. As a vector space it is isomorphic to F(H)⊗ CH, with basis
{(Ph,g) | g,h ∈ H}. Its ribbon algebra structure is given by

(Ph,g)(P′
h,g

′) = δh,gh′g−1(Ph,gg′) (A.20)

1 = ∑
h∈H

(Ph,e) (A.21)

∆(Ph,g) = ∑
h′∈H

(Ph′ ,g)⊗ (Ph′−1h,g) (A.22)

ε(Ph,g) = δh,e (A.23)

S(Ph,g) = (Pg−1h−1g,g
−1) (A.24)

R = ∑
g∈H

(Pg,e)⊗ (1F(H),g) (A.25)

c = ∑
g∈H

(Pg,g). (A.26)
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Dual quantum double The dual D(H)∗ of the quantum double D(H) is the vector
space

(
F(H)⊗CH

)∗
'
(
F(H)

)∗
⊗
(
CH
)∗

' CH ⊗F(H) together with Hopf algebra
structure

(g,Ph)(g
′,P′

h) = δh,h′(gg′,Ph) (A.27)

1 = ∑
h∈H

(e,Ph) (A.28)

∆(g,Ph) = ∑
h′∈H

(g,Ph′)⊗ (h′−1gh′,Ph′−1h) (A.29)

ε(g,Ph) = δh,e (A.30)

S(g,Ph) = (h−1g−1h,Ph−1). (A.31)

The dual quantum double is not necessarily braided; however it is cobraided [20,
§VIII.5].

A.2 Some properties of Hopf algebras
The definition of an algebra is so general, that it can usually only be made interesting
by imposing additional structure. We will always assume associativity and unitality
(p.102).

A Hopf algebra, on the other hand, has so much structure that it has many desirable
properties. We will list some of those here as lemmas, which may be useful to the
reader.

Lemma A.1. Let A be a Hopf algebra. If A is semisimple, then A is finite-dimensional.

Proof. See corollary 2.7 in [45].

Lemma A.2. Let A be a Hopf algebra, and B be a sub-Hopf algebra of A. If A is
semisimple then B is semisimple.

Proof. See corollary 2.5 in [26].

Lemma A.3. Let A be a semisimple Hopf algebra over a field of characteristic 0, and
let S be its antipode. Then S2 = id, so the antipode is its own inverse.

Proof. See theorem 4 in [25].

Lemma A.4. Let A be a Hopf algebra, and B be a finite-dimensional subbialgebra of
A. Then B is a sub-Hopf algebra of A.

Proof. See lemma 1 in [39].

Lemma A.5. Let A be a finite-dimensional Hopf algebra, and B be a sub-Hopf algebra
of A. Then dimB divides dimA.

Proof. See corrolary 1.6 in [26].

Lemma A.6. Let A and B be a Hopf algebras and let Γ : A → B be a surjective Hopf
morphism. If A is braided with R-matrix RA then B is braided by RB = (Γ⊗Γ)(RA).
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Proof. First, we note that R−1
B = (Γ⊗Γ)(R−1

A ), because

1B ⊗1B = (Γ⊗Γ)(1A ⊗1A) = (Γ⊗Γ)(RAR−1
A ) = (Γ⊗Γ)(RA) · (Γ⊗Γ)(R−1

A )

= RB · (Γ⊗Γ)(R−1
A ),

where we made use of the fact that Γ is a Hopf morphism several times.
We check all conditions for braided Hopf algebras, namely (A.12), (A.13) and

(A.14). Because Γ is surjective, all elements b ∈ B can be written as Γ(a) for some
a ∈ A.

∆op
B (b) = τ ◦∆B(Γ(a)) = τ ◦ (Γ⊗Γ)∆A(a) = (Γ⊗Γ)(τ ◦∆A)(a)

= (Γ⊗Γ)
(
RA∆A(a)R−1

A

)
= RB

(
(Γ⊗Γ)∆A(a)

)
R−1

B

= RB∆B(b)R−1
B .

Here we used that Γ is a Hopf morphism in the second and the last two equalities.

(∆B ⊗ idB)(RB) = (∆B ⊗ idB)
(
(Γ⊗Γ)(RA)

)
= (Γ⊗Γ⊗Γ)

(
(∆A ⊗ idA)(RA)

)

= (Γ⊗Γ⊗Γ)
(
(RA)13(RA)23

)

= (Γ⊗Γ⊗Γ)(RA)13 · (Γ⊗Γ⊗Γ)(RA)23

= (RB)13(RB)23.

Here, in the last equality, one has to recall that (RA)i j is a linear combination of ele-
ments of A, and because Γ is a linear map, each of those elements will be sent to the
corresponding element in B. In other words:

RB = (Γ⊗Γ)(RA) = (Γ⊗Γ)
(

∑
k

(RA)k
l ⊗ (RA)k

r
)

= ∑
k

Γ
(
(RA)k

l
)
⊗Γ
(
(RA)k

r
)
.

Condition (A.14) is checked in the same way.

A.3 Additional proofs
Lemma A.7. Let H be a group, let A be a conjugacy class of that group. The central-
izers of two elements of A are isomorphic.

Proof. From the definition of a conjugacy class hah−1 ∈ A ∀a ∈ A, h ∈ H, and fur-
thermore, every a ∈ A can be written as at least one combination ha′h−1, h ∈ H for
every a′ ∈ A.

Now take the centralizer Na = {n ∈ H|nan−1 = 1} of a, so. Take h ∈ H −Na and
a′ ∈ A so that ha′h = a 6= a′. With this

nha′h−1 = ha′hn;

h−1nha′h−1h = h−1ha′h−1nh;

h−1nha′ = a′h−1nh ∀n ∈ Na.

Then the set Na′ = {n′ = h−1nh | n ∈ Na} commutes with a′.
We now show that the map Na → Na′ by this h ∈ H is an injection: take n1,n2 ∈ Na.

Then

n′1 = h−1n1h = h−1n2h = n′2;

hh−1n2hh−1 = hh−1n2hh−1;

n1 = n2.
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In the same way the map Na′ → Na defined by n′ 7→ hnh−1 is injective. Then h defines
a bijection, which also respects the group multiplication:

n′1n′2 = hn1h−1hn2h−1 = hn1n2h−1 = (n1n2)
′.

Proposition A.8. Let H be a finite non-Abelian group with non-trivial center. Then
there is at least one dyonic representation of D(H) which allows a condensate vector
with trivial spin and self-braiding.

Proof. Let Z be the center of H. It is a normal subgroup, so the quotient H/Z is a group.
Each element h∈H can be written as an, where a∈H/Z seen as Z-coset representative
and n ∈ Z. H/Z must be non-Abelian, because if h1,h2 ∈ H do not commute we have

a1n1a2n2 = a1a2n1n2 6= a2n2a1n1 = a2a1n1n2 ⇒ a1a2 6= a2a1. (A.32)

Because H/Z is non-Abelian, it must have at least one non-trivial one-dimensional
(irreducible) representation, which we denote by J. Then J ′ : an 7→ J(a) is a non-trivial
one-dimensional irreducible representation for H. Indeed we have

J′(a1n1a2n2) = J′(a1a2n1n2) = J(a1a2) = J(a1)J(a2) = J′(a1n1)J
′(a2n2). (A.33)

The first equality holds because n1 is central in H, the second because H/Z is a group
so a1a2 ∈ H/Z, and the last by the definition of J ′.

By the same argument, higher-dimensional irreducible representations of H/Z will
induce representations of H, but those can then be reducible.

Take an element n ∈ Z; then Πn
J′ is an irreducible dyonic representation of D(H).

Because it is one-dimensional and n is central in H, the trivial self-braiding condition
(3.20) reduces to a simple form:

|φ〉⊗ |φ〉 = τ ◦ (Πn
J′ ⊗Πn

J′)(R)(|φ〉⊗ |φ〉)
= τ ◦ ∑

h∈H

(
Πn

J′(Ph,e)⊗Πn
J′(1,e)

)
(|φ〉⊗ |φ〉)

= τ
(
|φ〉⊗Πn

J′(1,n)|φ〉
)

= J′(n)|φ〉⊗ |φ〉.

So the condition is J′(n) = 1, which is true by our definition of J ′. Furthermore, the
condition of trivial spin is also J′(n) = 1, which is then immediately satisfied as well.

A.4 Additional calculations

A.4.1 The odd dihedral groups
The odd dihedral groups Dn, n odd, have the same group definition as the even dihedral
groups,

Dn = {smrk | s2 = rn = 1, srk = r−ks} m = 0,1; k = 1, . . . ,n−1. (A.34)

but the have a different general structure, because there is no non-trivial central ele-
ment. Its conjugacy classes are The n−1

2 +2 conjugacy classes of Dn are

[e] = {e}; [rk] = {rk,r−k}; [s] = {s,sr, . . . ,srn−1}; k = 0, . . . ,
n−1

2
. (A.35)
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The centralizers of the elements of Dn are

Ne = Dn,

Nrk = {r j | j = 0, . . . ,n−1} ' Zn,

Nsri = {e,sri} ' Z2 i = 0, . . . ,n−1. (A.36)

(A.37)

There are two one-dimensional representations given by

J0(s
mrk) = 1; J1(s

mrk) = (−1)m. (A.38)

There are n−1
2 two-dimensional irreducible representations α j, given by the same defi-

nition as (4.5):

α j(r
k) =

(
q jk 0
0 q− jk

)

, α j(srk) =

(
0 q− jk

q jk 0

)

. (A.39)

The character table of Dn, n odd, is

Dn [e] [rk] [s]
J0 1 1 1
J1 1 1 −1
α j 2 q jk +q− jk 0

The irreducible representations of the quantum double of D(Dn), n odd are (see
also [7, §5.2]).

D(Dn) Πe
J0,1

Πe
α j

Πrk

βl
Πs

γ0
Πs

γ1

dA
α 1 2 1 n n

sA
α 1 1 q−lk 1 −1

A.4.2 Branching of representations to the residual symmetry alge-
bra

We give some examples of how to calculate the tensor product decomposition of the
restriction of an irreducible D(Dn)-representation to the residual symmetry algebra T .

Branching of Πrk

βl
in a Πe

J1
-condensate For this example we take the condensate

vector |φ〉 to lie in the representation space of Πe
J1

, so that T ' F(Dn) ⊗̃CZn, and Πrk

βl
as irreducible D(Dn)-representation (see (4.24)).

The character for ΠA
α is just the restriction of its character to T . The formula for

the characters is

∑
h∈Dn
g∈〈r〉

χB
β (Ph,g)χA

α (Ph,g)∗ = ∑
h,g

1B(h)1Nh
(g)χβ (k−1

h gkh)1A(h)1Nh
(g)χα(k′−1

h gk′h)
∗

From this we immediatly see that this will always be zero when B is not contained in
A. For our ΠA

α , A = {rk,r−k}, so the only candidates are Ωrk

β
l′

and Ωr−k

β
l′

. We then see



110 Appendix A. Background material

that the stabilizer of these orbits in N|φ〉 = 〈r〉 is the whole group. We calculate further:

∑
h∈{rk,r−k}

rp

χβ
l′
(k−1

h rpkh)χβl
(k′−1

h rpk′h)
∗.

Next, note that the orbits B consist of just one element, either rk or r−k, but that the orbit
(conjugacy class) A = {rk,r−k}. The cosets representatives are krk = e and kr−k = s.
We then find

∑
p

χβ
l′
(rp)χβl

(rp)∗, B = {rk},

∑
p

χβ
l′
(rp)χβl

(r−p)∗, B = {r−k}.

Now we wish to know for which βl′ these equations are satisfied. The representations
βl and βl′ are one-dimensional, and are therefore isomorphic to their characters. They

are given by βl(r
p) = ql p, where q ≡ eı 2π

n . This gives us

∑
p

ql′pq−l p = q(l′−l)p, B = {rk},

∑
p

ql′pql p = q(l′+l)p, B = {r−k}.

Because the sum of all roots of unity is zero, these equations can only be non-zero
when (l′− l) resp. (l′ + l) are zero. So we find the decomposition

Πrk

βl
|
T

' Ωrk

βl
⊕Ωr−k

β−l
.

Branching of Πs
J2

in a gauge-invariant Πrn/2

J0
-condensate Normally one would use

characters to determine the branching rules. In this example, as an illustration we do
an explicit calculation.

For this example we take n
2 to be even, so that the Dn-orbit [s] = {s,sr2, . . . ,srn/2−2}

in Dn/2. The Dn-stabilizer of s is {e,rn/4,rn/2,r3n/4,srk,srk+n/4,srk+n/2,srk+3n/4} '

D4, so for this orbit we have irreducible T -representations Ωs
Ji
, i = 0,1,2,3 and Ωs

α .

For Πs
J2

, the representation space is spanned by |sr2k〉, k = 0, . . . , n
2 −1, for which

(Ph,e) ⇀ |sr2k〉 = δh,sr2k |sr2k〉. When restricting to T ' F(Dn/2) ⊗̃CDn, we consider
only functions of the form Ph + P

hrn/2 . We can perform a basis transformation on the
representation space V s

J2
, so that the basis vectors are now

|sr2k ± ısr2k+n/2〉 ≡ |sr2k〉± ı|srsk+n/2〉, k = 0, . . . , n
4 . (A.40)

This transformation will enable us to identify this representation space as a representa-
tion space of an irreducible T -representation. Let’s calculate the representation values
of the restriction of Πs

J2
to T on this basis. The action of the F(Dn/2)-part is obvious,

and we suppress it in the following equations.

Πs
J2

(ry)|sr2k ± ısr2k+n/2〉 =

{
|J2(r

n/2)sr2(k−y)± ıJ2(e)sr2(k−y)+n/2〉 − n
2 < k− y ≤ 0

|J2(e)sr2(k−y)± ıJ2(r
n/2)sr2(k−y)+n/2〉 0 < k− y ≤ n

2

Πs
J2

(sry)|sr2k ± ısr2k+n/2〉 =

{
|J2(s)sr2y−2k ± ıJ2(srn/2)sr2y−2k+n/2〉 − n

2 ≤ k− y < 0
|J2(srn/2)sr2y−2k ± ıJ2(s)sr2y−2k+n/2〉 0 ≤ k− y < n

2
(A.41)
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The action of rn/2 will just give J2(r
n/2) as it commutes with the entire orbit. This

should be calculated separately from the formulae above.
We similarly calculate the representation values of Ωs

α . Its representation space is
labelled by and element sr2k of the orbit {s,sr2, . . . ,srn/2−2}, and some vector v in the
representations space of the D4-representation α .

It is now easiest to split off an element of the stabilizer of s, and let this act first; so
we write ry = ry′rzn/4 with y ∈ {0, . . . , n

4 −1} and z ∈ {0,1,2,3}. This element will end
up in the argument of α , prehaps multiplied with an additional factor of rn/4 depending
on the values of y′ and k.

Ωs
α(ry)|sr2k,v〉 = ry′ ⇀ |sr2k,α(rzn/4)v〉

=

{
|sr2k−2y′ ,α(rzn/4)v〉 k− y′ > 0
|sr2k−2y′ ,α(r(z+1)n/4)v〉 k− y′ < 0

Ωs
α(sry)|sr2k,v〉 = sry′ ⇀ |sr2k,α(rzn/4)v〉

=

{
|sr−2k+2y′ ,α(r(z+1)n/4)v〉 k− y′ > 0
|sr−2k+2y′ ,α(rzn/4)v〉 k− y′ < 0

(A.42)

Let’s now look at the specific representation values for the actions of rn/4 and s:

Πs
J2

(rn/4)|sr2k ± ısr2k+n/2〉 = ±ı|±ısrsk+n/2 + sr2k〉 (A.43)

Ωs
α(rn/4)|sr2k,v〉 = |sr2k,α(rn/4)v〉 = |sr2k,

(
ı

−ı

)

v〉 (A.44)

Πs
J2

(s)|sr2k ± ısr2k+n/2〉 = ∓ı|srn−2k+n/2 ∓ srn−2k〉 (A.45)

Ωs
α(s)|sr2k,v〉 = |srn/2−2k,α(srn/4)v〉 = |srn/2−2k,

(
−ı

ı

)

v〉 (A.46)

If we now make the identification

|sr2k + ısr2k+n/2〉 = |sr2k
(

1
0

)

〉

|sr2k − ısr2k+n/2〉 = |sr2k
(

0
1

)

〉 (A.47)

we see that the two representations are indeed equivalent: Πs
J2
|
T

' Ωs
α . Similarly

Πs
J3
|
T

' Ωs
α , because the only difference is J3(s) = −J2(s), but

(
1

−1

)(
−ı

ı

)(
1

−1

)

=

(
ı

−ı

)

, (A.48)

so it is still equivalent to α(s).

A.5 Induced representations for a semidirect product
by an Abelian group

This section describes the construction of the irreducible group-representations of the
semidirect product of a group (with known irreducible represenations) by an Abelian
group. This formalism is used in §6.3 to construct the irreducible representations of the
group Gn.

We follow Serre [43, §8.2], but the derivation is presented more elaborately here.
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A.5.1 Extending representations of the Abelian subgroup
We take a group G and subgroups A and H, such that A is Abelian and normal, and G is
a semidirect product of H by A, denoted as G = AoH. This means that every element
of G is written as ah with a ∈ A, h ∈ H, and the multiplication is given by

(ah)(a′h′) = a(ha′h−1)hh′.† (A.49)

Because A is Abelian, all its irreducible representations are one-dimensional, and the
characters are equal to these representations and form a group of group morphisms
from A to the non-zero complex numbers:

X = Hom(A,C∗) C
∗ = C−{0}. (A.50)

There are |A| characters, which are orthogonal by the orthogonality theorem for finite
groups. The multiplication is given by χ .χ ′(a) = χ(a)χ ′(a). Then χ(a) is never zero,
as there is some integer m such that am is the unit element, and 1 = χ(am) = χ(a)m. The
unit of the group is of course the character of the trivial representation χ : a ∈ A 7→ 1.

We can define an action of the group G on X by

(g ⇀ χ)(a) = χ(g−1ag) g ∈ G,χ ∈ X ,a ∈ A. (A.51)

This is a well-defined group action because

(g ⇀ χ)(a1a2) = χ(g−1a1a2g) = χ(g−1a1gg−1a2g) = χ(g−1a1g)χ(g−1a2g)

=
(
(g ⇀ χ)(a1)

)(
(g ⇀ χ)(a1)

)

Because every element g of G can be written as aghg, we have

g−1ag = h−1
g a−1

g aaghg = h−1
g ahg, (A.52)

so the action of g on X depends only on the class of G/A = H to which g belongs.
Next we look at the orbits of H in X : we take a certain χ ∈ X , and we let all the

elements of H work on this character by the above defined action. This will give us a
certain subset of X , called the orbit of H for χ . Because H is a group, all the characters
in a certain orbit will be sent to each other. We will denote an orbit by a representative
χi:

χi = {χ ∈ X |∃h ∈ H : h ⇀ χi = χ}. (A.53)

Now we define a subgroup Hi ⊂ H of all elements that leave the representative χi
invariant:

Hi = {h ∈ H|h ⇀ χi = χi}. (A.54)

Set Gi = A o Hi ⊂ G and extend χi : A → C
∗ to χi : Gi → C

∗ by

χi(ah) = χ(a) ∀a ∈ A,h ∈ Hi. (A.55)

We will now show that this is a character of degree 1, i.e. χi(e) = 1, for Gi. For
clarity denote the respective maps by χGi

i
and χA

i . If χGi
i

is to be a character of degree
†There is a more general definition of a semidirect product: take two groups K and H, and ϕ ∈

HomGroup

(
H,Aut(K)

)
. Then K o H is the group of pairs kh, with multiplication (kh)(k′h′) = k(ϕ(h) ⇀

k′)hh′. In the above case, ϕ(h) is the action of conjugation by h.
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one, it has to be equal to a one-dimensional representation of Gi. Take two elements
g j = ag j

hg j
, j = 1,2 of Gi. By definition we have:

χGi
i

(g1g2) = χGi
i

(ag1
hg1

ag2
hg2

) = hg1
⇀ χGi

i
(ag1

hg1
ag2

hg2
)

= χGi
i

( h−1
g1

ag1
hg1

︸ ︷︷ ︸

∈A as A normal

ag2
hg2

hg1
︸ ︷︷ ︸

∈H

) = χA
i (h−1

g1
ag1

hg1
ag2

)

= χA
i (h−1

g1
ag1

hg1
)χA

i (ag2
) =

(
hg1

⇀ χGi
i

(ag1
)
)
χgi

i
(ag2

)

= χGi
i

(ag1
)χGi

i
(ag2

) = χGi
i

(ag1
hg1

)χGi
i

(ag2
hg2

)

= χGi
i

(g1)χGi
i

(g2).

Together with χGi
i

(e) = χA
i (e) = 1 we see that indeed χGi

i
is a one-dimensional repre-

sentation of Gi, and we will revert to the notation χi for both Gi and A.
Let ρHi denote an irreducible represenation of Hi, then define a irreducible repre-

sentation of Gi by ρGi : g = ah 7→ ρHi(h) ∀a ∈ A, h ∈ Hi. We see that ρGi is irreducible
by noting that ρHi and ρGi have the same representation space, and that if that space
does not have an invariant subspace under the action of Hi, it certainly is not going to
have an invariant subspace under the action of Gi, of which Hi is a subgroup.

By defining χi ⊗ρGi : g ∈ G 7→ χi(g)⊗ρGi(g) we obtain another irreducible repre-
sentation of Gi: it is clearly a representation by the above definitions; if we denote by
Vρ the representation space of ρGi , then the representation space of χi⊗ρGi is C

∗⊗Vρ ,
and we have an injection Vρ → C

∗⊗Vρ , v 7→ 1⊗v. Through this injection, we see that
if Vρ has no invariant subspace under the action of Gi, then C

∗⊗Vρ does not either:
χi ⊗ρGi is an irreducible representation.

A.5.2 Induced representations

As our next step we are going to induce this representation of Gi to G. There is much
to say about induced representations, and we will provide only what is needed for what
follows. More can be found in for example [13, 24, 43].

Let CE be a group algebra and CF the group algebra of a subgroup, and ϕ a repre-
sentation of CF , with representation space Vϕ . We can then contruct a representation
of CE by considering CE ⊗

CF Vϕ as a CE-module. In the language of represenations
this means that the representation space is CE/CF ⊗Vϕ ; after choosing a basis ek ⊗vl ,
where ek is considered as a coset representative, the action of CE is given by

p ∈ CE ⇀ ek ⊗vl = pek ⊗vl

= ep
l ⊗ϕ(np

l )vl , (A.56)

where pek = ep
l
np

l
, np

l
∈ F . This is a representation, because multiplication in E is

associative and ϕ is a representation. We can work this out by taking two elements
p,q ∈ CE, then

epq
k npq

k = (pq)ek = p(qek) = (peq
k)n

q
k = (eq

k)
p(nq

k)
pnq

k . (A.57)
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Thus epq
k

= (eq
k
)p and npq

k
= (nq

k
)pnq

k
. Then we can write

(pq) ⇀ ek ⊗vl = epq
k ⊗ϕ(npq

k )vl

= (eq
k)

p ⊗ϕ
(
(nq

k)
p)ϕ(nq

k)vl

= p ⇀ eq
k ⊗ϕ(nq

k)vl

= p ⇀
(
q ⇀ ek ⊗vl

)
.

Now, returning to our previous case, we induce the irreducible representation χi⊗ρ
from Gi to G and denote the induced representation by θi,ρ . A basis for its rep-
resentation space is given by gk ⊗ e ⊗ vl , where the gk are coset representatives of
G/Gi ' H/Hi

†, e spans the one-dimensional representation space of χi, and the vl
form a basis of the representation space of ρ .

Proposition A.9.

(i) θi,ρ is irreducible

(ii) θi,ρ ' θi′,ρ ′ ⇒ i = i′ and ρ ' ρ ′

(iii) every irreducible representation of G is isomorphic to one of the θi,ρ .

Proof. (i) We are going to use a theorem by Mackey [29, th.6], which is referred
to in [43] as Mackey’s irreducibility criterion: take a group E, a subgroup F , an
irreducible representation ρ of F . For all elements s∈E−F , define the subgroup
Fs by sFs−1 ∩F . Then the induced representation of ρ to G is irreducible if and
only if for all s ∈ E −F , the two representations of Fs, ρs : f 7→ ρ(s f s−1) and
ρ|Fs

: f 7→ ρ( f ) are disjoint, i.e. have no common irreducible components.

We will show that this applies to our group Gi = A o Hi. So now s ∈ G−Gi,
and for g ∈ (Gi)s we have (χi ⊗ρ)s : g 7→ χ(sgs−1)⊗ρ(sgs−1), (χ ⊗ρ)|(Gi)s

:
g 7→ χ(g)⊗ρ(g). It is enough to show that these representations are disjoint for
the subgroup A of Gi. This can be seen by the following argument: to be dis-
joint representations, the decomposition of these representations into irreducible
components may not contain any factor in common. If there were such a com-
mon factor, then considered as A-representations, these components would be
isomorphic. But if there are no isomorphic components under the action of the
elements of A, there certainly will be no such components under the action of the
larger group Gi.

Note that the restriction of χi ⊗ρ to A is χi ⊗1, and all its decomposition factors
are isomorphic to χi. This also gives (χ ⊗ρ)s|A = (s ⇀ χA

i )⊗1. Next, we recall
that

(s ⇀ χA
i )(a) = (ashs ⇀ χA

i )(a) = χA
i (h−1

s a−1
s aashs)

= χA
i (h−1

s ahs) = (hs ⇀ χA
i )(a).

But as s /∈ A o Hi, we know that hs ⇀ χA
i 6= χA

i . Therefore (χi ⊗ ρ)s|A and
(χi ⊗ρ)|A are disjoint, and χi ⊗ρ is an irreducible G-representation.

†This isomorphism of equivalence classes holds by h = xh̃, x ∈ H/Hi, h̃ ∈ Hi ⇒ g ∈ Gi = ah = axh̃ =
xx−1axh̃ = xg̃, g̃ ∈ Gi, because a ∈ A and A normal.
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(ii) Let’s restrict θi,ρ to A. The action of an element a ∈ A gives

a ⇀ gk ⊗ e⊗vl = (agk)⊗CGi
e⊗vl = (gk g−1

k agk
︸ ︷︷ ︸

∈A

)⊗
CGi

e⊗vl

= gk ⊗χi(g
−1
k agk)e⊗vl =

= gk ⊗ (gk ⇀ χi)(a)e⊗vl (A.58)

As we see, we will only get characters χ in the orbit Hχi, so that the label i in
θi,ρ determines χi. This still holds for the action of other elements of G, so those

ah for which h 6= e, as χGi
i

(ah) = χA
i (a) ∀h ∈ Hi, and the most left tensor product

denotes CGi-linearity, in other words, it ‘lets through’ elements of CGi.

For the second part, of the represenation space W of θi,ρ take the subspace Wi =

{w ∈W |θi,ρ(a)w = χi(a)w ∀a ∈ A}. Writing this out on a basis element:

a ⇀ (gk ⊗ e⊗vl) = gkg−1
k agk ⊗ e⊗vl

= gk ⊗χi(g
−1
k agk)e⊗ρGi(g−1

k agk)vl

= gk ⊗ (gk ⇀ χi)(a)e⊗ρHi(e)vl ,

so that in order for this to be equal to gk ⊗χi(a)e⊗vl , we demand gk ⇀ χi = χi.
But then gk ∈ Hi, and since gk ∈ H/Hi, we must have gk = e. Now, take an
element h ∈ Hi, then

h ⇀ (e⊗ e⊗vl) = e⊗χGi
i

(h)e⊗ρ(h)vl

= e⊗χA
i (e)e⊗ρ(h)vl

and we see that this representation of Hi on Wi is isomorphic to ρ . So the label
ρ in θi,ρ determines the representation ρ .

We conclude that for two G-representations θi,ρ ,θi′,ρ ′ to be isomorphic, we must
have i = i′ and ρ ' ρ ′.

(iii) The proof can be found in [43, §8.2] and requires some additional preliminary
knowledge; I may decide to include it here at a later stage.

So by applying this construction, we are able to collect all irreducible representa-
tions of G.



Appendix B

GAP† code comparing group
representations to D(Dn)

#GAP instructions that searches all groups of order 4n^2 for

#those of which the dimensions of the irreducible representations

#correspond to those of the quantum double D(D_n) of the dihedral

#group D_n of order 2n.

searchDDnIrreps := function ( n )

local d, i, k, l, m, o, p, q, t, dimlist, nlist;

#t is the number of irreducible representations of D(D_n)

if n mod 2 = 0 then

t := 1 / 2 * n * n + 14;

else

t := 1 / 2 * n * n + 7 / 2;

fi;

o := 4 * n * n; # o is the dimension of D(D_n)

l := NrSmallGroups( o );

Print( "There are ", l, " groups of order ", o, "\n" );

i := 1; #i is the index looping through the groups of order o

k := 0; #denotes the number of groups that have the right

#number of irreducible representations with the right

#dimensions

repeat #we loop through all groups of order o, which are

#retrieved from the GAP library SmallGroups

Print(i, " " );

#we first check whether the number of conjugacy classes

#of this group is equal to the number of irreducible

#representations of D(D_n). If it is not, we can discard

#this particular group.

if NrConjugacyClasses( SmallGroup( o, i ) ) = t then

dimlist := [ ]; #dimlist is a list that holds the

#different dimensions of the

#irreducible representations

nlist := [ ]; #nlist holds the number of irreducible

#representation of dimension corresponding

†This software is distributed freely at http://www-gap.dcs.st-and.ac.uk/∼gap/
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#to the same position in dimlist

q := IrreducibleRepresentations(SmallGroup(o,i));

for p in q do

d := DimensionOfMatrixGroup( Image( p ) );

if d in dimlist then

nlist[Position( dimlist, d )] :=

nlist[Position( dimlist, d )] + 1;

else

Add( dimlist, d );

Add( nlist, 1 );

fi;

od;

if n = 4 then

#case 4 is special, because representations of dimension

#n/2 and of dimension 2 have the same dimensions

if Length( dimlist ) = 2 and

nlist[Position( dimlist, 1 )] = 8 and

nlist[Position( dimlist, 2 )] = 14

then

Print("\nGroup [", o, ",", i, "] complies\n");

k:=k+1;

fi;

elif n mod 2 = 0 then

if Length( dimlist ) = 3 and

nlist[Position( dimlist, 1 )] = 8 and

nlist[Position( dimlist, 2 )] = 1/2*n*n-2 and

nlist[Position( dimlist, n / 2 )] = 8

then

Print("\nGroup [", o, ",", i, "] complies\n");

k:=k+1;

fi;

else

if Length( dimlist ) = 3 and

nlist[Position( dimlist, 1 )] = 2 and

nlist[Position( dimlist, 2 )] = 1/2*n*n-1/2 and

nlist[Position( dimlist, n / 2 )] = 2

then

Print("\nGroup [", o, ",", i, "] complies\n");

k:=k+1;

fi;

fi;

fi;

i := i + 1;

UnloadSmallGroupsData();

until i > l;

Print("There are ",k," groups of order ",o," that comply\n");

return;

end;;
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Samenvatting

Dit is de plaats om, in wat in modern Nederlands “Jip-en-Janneke-taal” heet, op te
sommen wat vele maanden werk en vele pagina’s manuscript nu hebben opgeleverd,
zodat familie en vrienden verklaard wordt dat dat toch echt allemaal nodig was. Het
gemakkelijkst zou zijn, de welwillende maar ongeı̈nformeerde lezer te overdonderen
met imponerend jargon en termen als “fundamenteel inzicht”, “diepe verbanden” en
“universele beschrijving”. Ik zal dit podium echter gebruiken om, in contrast met de
hier en daar droge behandelde stof, wat luchtig door de concepten heen te gaan, in de
hoop toch nog het één en ander te kunnen overbrengen.

In zeker de helft van de recente natuurkundescripties zal op deze plaats begonnen
worden met een frase als: “Symmetrie is uitgegroeid tot het kernbegrip in de natuur-
kunde, waarmee vele verschijnselen beschreven kunnen worden” (zie ook de eerste zin
van de inleiding op pagina vi). Nu, dat is waar, en is ook zeker hier van toepassing.
In één zin wordt in deze scriptie een veralgemenisering van een veelgebruikte toepas-
sing van symmetrie in de natuurkunde, genaamd ijksymmetrie, beschreven, waarmee
vervolgens een aantal theoretische (hypothetische) modellen wordt doorgerekend. Ge-
lukkig zijn symmetrie en ijksymmetrie goed voorstelbaar en helder uit te leggen; voor
mijn eigen werk hierover geldt dat helaas een stuk minder.

Symmetrie in de natuur Een definitie van symmetrie zou kunnen zijn, dat de (na-
tuurkundige) eigenschappen van een systeem voor en na een zekere transformatie het-
zelfde zijn. Je kunt je dat als volgt voorstellen: ik stop een systeem in een kamer en
laat jou er naar kijken, je mag eraan meten wat je wilt. Vervolgens ga jij de kamer
uit, en ik voer er een transformatie op uit: ik draai het rond of iets dergelijks. Daarna
laat ik je weer binnen, en je mag weer gaan meten. Als jij het systeem nu niet kunt
onderscheiden ten opzichte van de eerdere situatie, is dat systeem invariant onder de
door mij uitgevoerde symmetrietransformatie.

Neem bijvoorbeeld een massief vierkant blok op een tafel. Als ik die over een
rechte hoek ronddraai rond zijn middellijn, kan de terugkerende waarnemer niet zeggen
of ik die nou rondgedraaid heb of niet. Een rechtopstaande cylinder kan ik zelfs over
iedere hoek ronddraaien. Een bol kan ik ook over andere assen draaien.

Een symmetrie hoeft niet noodzakerlijkerwijs praktisch uitvoerbaar te zijn. De
driehoek van figuur 1(a) is niet invariant onder draaiingen, maar een spiegeling langs
de stippellijn levert wel weer hetzelfde figuur op. Ondanks dat we zo’n spiegeling niet
in het echt kunnen bewerkstelligen, verschaft het wel informatie over de kenmerken
van het figuur.

Op deze manier zijn er veel vormen van symmetrie: rotatiesymmetrie (draaiin-
gen), spiegelingen in een vlak, lijn of punt, translatiesymmetrie (verschuivingen), en
meer abstractere zoals bijvoorbeeld tijdsomkeersymmetrie: de video-opname van de
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(a) (b) (c)

Figuur 1: Symmetrische objecten

beweging van een slinger van een staande klok kunnen we niet onderscheiden van die
opname die achterstevoren wordt afgespeeld.

Symmetriegroepen Een belangrijke eigenschap van een symmetrietransformatie is
dat wanneer we er twee achter elkaar uitvoeren, deze samengestelde transformatie zelf
ook een symmetrietransformatie vormt: twee keer draaien over een rechte hoek zal
het blok ook ononderscheidbaar achterlaten. We zeggen nu dat alle transformaties die
één bepaald systeem invariant laten de wiskundige structuur van een groep hebben,
afgezien van een paar andere eisen.

Nu kan een groep verschillende ondergroepen hebben, beperkte sets transformaties
die samen weer een gesloten groep vormen. Dit zal ik met een voorbeeld duidelijk
maken.

Neem een witte kubus, deze is invariant onder draaiingen over rechte hoeken (veel-
vouden van 90◦) over drie assen (figuur 1(b)). Stel dat ik nu één zijde zwart kleur, dan
kun jij een draaiing over bijvoorbeeld 90◦ over twee van de drie assen onderscheiden
(figuur 1(c)). Draaiingen over de as die de zwarte zijde doorsnijdt, laten de kubus nog
wel invariant. We zeggen nu dat de draaiingen door die as een ondergroep vormen van
de draaiingen over drie assen. Verder zeggen we dat door het kleuren van die ene zijde
de symmetrie gebroken is, en dat de overgebleven symmetrie de draaiingen rond één as
zijn†.

Diëdergroepen In mijn scriptie heb ik met name gekeken naar veralgemeniseringen
van bepaalde ondergroepen van de groep alle draaiingen van een pijl met vast beginpunt
in drie dimensies. Deze ondergroepen heten diëdergroepen, en bestaan uit draaiingen
over veelvouden van een vaste hoek èn evenveel spiegelingen. De n-de diëdergroep
(genoteerd door Dn) geeft alle symmetrieën van een regelmatige n-hoek. Zo kan een
vijfhoek steeds over 72◦ gedraaid worden, en zijn er vijf spiegellijnen (figuur 2).

Het bijzondere aan draaiingen in drie dimensies is dat twee opeenvolgende draai-
ingen niet hetzelfde resultaat hoeven te geven als dezelfde twee in omgekeerde volg-
orde, wat je zelf kunt nagaan met een dobbelsteen. Deze eigenschap van een groep heet

†Een interessant geval doet zich voor als we nu drie andere vlakken ook zwart kleuren, zo dat twee
tegenover elkaar liggende vlakken wit blijven. Draaiingen over de as door die witte vlakken laten het systeem
nu wel weer invariant. Dit heet symmetrieherstel, een verschijnsel dat ik in mijn scriptie echter niet behandel.
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Figuur 2: Vijfhoek heeft D5-symmetrie

niet-commutativiteit. De diëdergroepen (met n groter dan 2) zijn ook niet-commutatief,
wat aanleiding geeft tot enkele bijzondere gevolgen.

De modellen die ik in mijn scriptie behandeld heb, zijn alle gebaseerd op diëder-
groepen met even n.

IJksymmetrie Symmetrie kan zich, in contrast met de hierboven beschreven geval-
len, ook op een andere, meer verhulde manier manifesteren. Een voorbeeld is het meest
sprekend: stel dat ik de afstand tussen twee punten wil meten. Dan pak ik een liniaal,
lees de twee markeringen ten hoogte van beide punten af, en bereken het verschil. Het
maakt nu niet uit, met welke markeringen ik begin: ik kan de liniaal bij het eerste punt
op 0 cm leggen, maar net zo goed op 10 cm, het resultaat blijft hetzelfde. Het kiezen
van de markeringen, noemen we het kiezen van een ijk (gauge in het Engels), die voor
een zekere ijkvrijheid of ijksymmetrie zorgt.

In het algemeen duidt een ijkvrijheid op een overcomplete beschrijving van een
systeem. Dat wil zeggen dat we de grootheden van dat systeem te specifiek weergeven.
In de laatste vijftig jaar is dit concept in de natuurkunde in belang gegroeid, omdat
we met ijkvrijheid, die je in eerste instantie als onvolkomenheid in de beschrijving
op zou kunnen vatten, juist een heldere formulering van wisselwerking tussen deeltjes
verkrijgen. In het bijzonder zijn de deeltjes die geı̈ntroduceerd worden om de ijksym-
metrie in bepaalde theorieën te beschrijven, precies de deeltjes die krachten zoals de
electromagnetische kracht overdragen.

In deze scriptie worden modellen met ijksymmetrie behandeld die ook nog een
andere vorm van wisselwerking vertonen, die hieronder beschreven wordt.

Topologische interacties Als natuurkundigen en ‘gewone mensen’ nadenken over
wisselwerking van deeltjes, dan komt al snel het beeld van botsende biljartballen naar
voren. Dit is tot op zekere hoogte een goede benadering. Een meer nauwkeurige
beschrijving is dat twee deeltjes een ijkdeeltje uitwisselen, zoals hierboven uitgelegd;
zo stoten twee electronen elkaar af onder uitwisseling van een foton.

Nu blijken in bijzondere systemen deeltjes ook te kunnen wisselwerken zonder dat
er sprake is van de uitwisseling van een krachtdrager. Deze wisselwerking is afhan-
kelijk van bepaalde meetkundige (topologische) eigenschappen van wat we de confi-
guratieruimte van die systemen noemen. De configuratieruimte is een manier om alle
mogelijke toestanden van alle deeltjes in een systeem te ordenen, en een punt in die
ruimte is dan één bepaalde toestand. Voor eenvoudige benaderingen is het bijvoor-
beeld voldoende om de plaats en de snelheid van ieder deeltje te weten.

Normaliter zijn de grootheden die het systeem in de configuratieruimte beschrijven
continu: zij vertonen geen sprongen. Wanneer er zich wel een sprong of discontinuı̈teit
voordoet, spreken we van een topologisch defect. Deze topologische defecten kunnen
nu invloed uitoefenen, wisselwerking aangaan, met gewone deeltjes of met elkaar.
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Het bijzondere van dit soort wisselwerkingen, die topologische interacties genoemd
worden, is dat ze veroorzaakt kunnen worden door aanpassingen aan een systeem, die
in eerste instantie geen merkbaar verschil ten gevolg hebben.

Het bekendste voorbeeld is het Aharonov–Bohm effect, schematisch weergegeven
in figuur 1.1 op pagina 5. Twee electronenbundels veroorzaken een interferentiepatroon
op een scherm. We plaatsen een zeer lange spoel tussen de bundels; door een stroom
door de spoel te sturen wordt een magnetisch veld opgewekt, maar dat veld bevindt
zich alleen binnen de spoel. Zo’n veld zou invloed hebben op de beweging van de
electronen, maar doet dat nu niet, want buiten de spoel is dat veld er niet. Toch zien
we dat het interferentiepatroon verschuift, en dat wordt, kort gezegd, veroorzaakt door
een overblijfsel van het magnetisch veld, dat zich ook buiten de spoel bevindt, maar
dat normaliter geen merkbare invloed op geladen deeltjes heeft.

Een belangrijke eigenschap van deze topologische interacties is dat ze enkel waar-
genomen kunnen worden, wanneer een topologisch defect geheel omcirkeld wordt. Zo
vormen de twee electronenbundels een gesloten lus om de spoel, het topologisch defect
hier. Daarom wordt de beschrijving van topologische defecten en interacties wiskundig
gegeven door te kijken naar gesloten lussen in de configuratieruimte.

Vlechtstatistiek Een gevolg van topologische interacties is dat de verwisseling van
twee deeltjes in een systeem op bijzondere wijze plaatsvindt. De beschrijving van hoe
een veel-deeltjes systeem zich gedraagt onder verwisseling van twee of meer deeltjes
wordt in de natuurkunde de statistiek van dat systeem genoemd. Tot voor kort waren
er twee mogelijkheden bekend, waarbij in beide gevallen het systeem identiek aan
zichzelf is na tweemaal verwisseling van dezelfde twee deeltjes.

Wanneer er echter topologische interacties aanwezig zijn, gaat dit niet langer op.
We hebben namelijk gezien dat wanneer een deeltje een defect omcirkelt, wat neer
komt op het tweemaal verwisselen van de twee, dit deeltje beı̈nvloed kan worden, zodat
het totale systeem veranderd is ten opzichte van de eerdere situatie. Je zou je dit kunnen
voorstellen als dat het defect en het deeltje om elkaar heen vlechten, en zo’n vlecht kan
niet zomaar worden losgetrokken.

Om deze reden zegt men dat zulke systemen onderhevig zijn aan vlechtstatistiek
(Engels: braid statistics). In bepaalde gevallen levert de verwisseling van twee deeltjes
alleen een breuk van gehele getallen, een fractie, op, en er wordt dan gesproken van
fractionele statistiek, waarnaar op dit moment veel onderzoek plaatsvindt, ook in het
lab.

Quantum dubbels Nu is het tijd om al deze zaken aan elkaar te knopen. In deze
scriptie is gekeken naar systemen met ijksymmetrie, en eigenschappen onder ijktrans-
formaties classificeren de deeltjes in zo’n systeem. Verder gaan we er vanuit dat er ook
topologische defecten zijn die topologische interacties veroorzaken. De defecten vatten
we ook als puntdeeltjes op, die eveneens door middel van de ijkgroep geclassificeerd
worden. Ten slotte kunnen we ons ook samengestelde deeltjes voorstellen, die zowel
ijklading als topologische lading hebben, ofwel die zich zowel als gewoon deeltje als
als defect manifesteren.

Uitgaande van de ijkgroep, kunnen we een ander wiskundig object construeren, de
quantum dubbel van die ijkgroep. Een quantum dubbel is een speciaal geval van een
Hopf algebra, en veel van het gepresenteerde werk is van quantum dubbel naar Hopf
algebra te generaliseren.
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De quantum dubbel verschaft alle informatie over de classificatie van deeltjes, de-
fecten en samengestelde deeltjes. Voorts levert het ook direct een beschrijving voor de
vlechtstatistiek van die deeltjes. Anders gezegd zijn de wiskundige eigenschappen van
de quantum dubbel precies de veralgemenisering van de eigenschappen van de ijkgroep
wanneer we ook topologische interacties in beschouwing nemen.

Verder kunnen we met deze quantum dubbels ook naar eerder genoemde symme-
triebreking kijken: er is wederom een natuurlijke manier om symmetriebreking van
groepen te veralgemeniseren naar quantum dubbels. Het grootste gedeelte van deze
scriptie beslaat het doorrekenen van de symmetriebreking van quantum dubbels van
even diëdergroepen.

Wat heb je er nu aan? Samengevat behandel ik dus een reeds opgebouwde theo-
rie die een beschrijving geeft van symmetrie en symmetriebreking van een systeem
waarin zowel interacties door middel van uitwisseling van ijkdeeltjes als topologische
interacties voorkomen. Verder heb ik een hele familie van mogelijke quantum dubbels
doorgerekend.

De grote vraag is natuurlijk: waar vind je zulke systemen dan? Wel, die zijn nog
niet waargenomen. Er zijn natuurlijk aanleidingen om deze beschrijving zo op te stel-
len, maar concrete gevallen zijn nog niet bekend.

De eerste plaats om te zoeken is wat we gecondenseerde materie noemen, vaste
stoffen en vloeistoffen. Denk aan kristallen en metalen; het onderzoek wordt met name
verricht aan hele speciale vormen daarvan. Veel bijzondere eigenschappen zoals su-
pergeleiding zijn daarin waargenomen. Ook zijn er veel voorbeelden van topologische
defecten.

Wellicht zal er in de nabije toekomst een materiaal in een bijzondere toestand wor-
den gevonden, waarin deze topologische defecten met andere excitaties kunnen wissel-
werken op een manier die met een Hopf algebra te beschrijven is. Of dat dan ook de
quantum dubbels van diëdergroepen zijn, valt te betwijfelen, maar je weet maar nooit.

Zoals eerder vermeld is een ander hot topic de fractionele statistiek. Hier wordt veel
experimenteel onderzoek gedaan, en er zijn zeer recent heeft een onderzoeksgroep ge-
claimd deeltjes die fractionele statistiek vertonen direct gemeten te hebben. De model-
len in deze scriptie leveren de fractionele statistiek (en meer exotische vlechtstatistiek)
op een natuurlijke manier, en daar ligt misschien ook een toekomst voor hen.

Kort na het afstuderen op deze scriptie zal ik promotieonderzoek gaan verrichten
bij professor Jan Zaanen aan de Universiteit Leiden. In dat onderzoek ga ik de Hopf-
symmetriebenadering toepassen op zekere modellen analoog aan de beschrijving van
vloeibare kristallen, quantum liquid crystals genaamd. De hoop is dan een echt ver-
band te vinden tussen deze theoretische modellen en natuurkunde die experimenteel
geverifieerd kan worden.
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