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On April 8, 1911, in the physics laboratory located at ‘het Steenschuur’ in
Leiden, Heike Kamerlingh Onnes and his coworkers Cornelis Dorsman, Ger-
rit Jan Flim and Gilles Holst, measured the instantaneous drop in resistivity
of mercury when they cooled it below 4.2 degrees above absolute zero. They
were the first people in the world to have beheld the phenomenon of super-
conductivity, and thereby the first macroscopic quantum fluid.

This year we have celebrated the centennial of this event. Superconductivity
in its manifestation of the underlying quantum mechanical principles and
its potential for world-changing applications does not cease to challenge the
imagination. It is a privilege to be part of the continuing research on this
fascinating topic in its place of birth.

H. Kamerlingh Onnes and J.D. van der Waals with the helium liquefactor (1911)
photo courtesy of the Leiden Institute of Physics
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Chapter 1

Introduction

Condensed matter physics concerns the collective behaviour of a large num-
ber of particles that organize themselves into an ordered medium. It is the
qualification ‘ordered’ that sets the field apart from the study of gases or sim-
ple liquids. Thus, the primary business of a condensed matter physicist is to
discern when a system is ordered, and what sets apart one ordered medium
from the other. One step further, she could investigate how one state can
transform into another, for instance a liquid freezing into a solid or a para-
magnet going over into a ferromagnet. This is the study of phase transitions,
and in its modern incarnation is over 100 years old. The traditional way of
thinking is always about obtaining a more ordered state (solid) from a less
ordered state (liquid). This is accompanied by a lowering of the external or
internal symmetry of the system.

It had been realized first in material science that metals start to degrade
in their structural integrity but also their electronic properties by the pres-
ence of defects: aberrations in the regularity of the crystal lattice. If it is
just a missing or superfluous particle, it is called an interstitial, and it will
have limited effect on the overall properties of the material. Conversely, if
the defects are topological, their influence has bearing throughout the whole
system. Therefore those are usually confined in combinations whose topo-
logical effects cancel out each other.

The topological defects are sources of disorder. Letting more and more of
these topological defects enter the system amounts to putting more disorder
into it. It is tempting to continue this reasoning by stating that also the
transitions into a more disordered phase are therefore caused by topological
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defects. That is indeed the principal perspective in this thesis. The defects
are then the agents that restore symmetry in the system.

The alternative of focussing on disordering instead of ordering of matter
is known as a duality. Each point of view is equally valid, and one can freely
switch between the one or the other, in the ideal case via a mathematical
isomorphism. Practically speaking, there are often advantages of preferring
one approach over of the other, and it is therefore useful to develop both
the traditional and the dual methods in order to maximize the size of the
toolbox. Basically, the canonical formalism works well when the system is
mostly ordered, the dual formalism when it is heavily disordered. But it
is not just pragmatism that encourages the dual way of thinking; it also
reveals deeper truths about the physical principles that dictate the effective
collective behaviour in many-body systems.

This thesis fully embraces the dual side, and expands its applicability to
higher dimensions where it was mostly restricted to the spatial plane. Let
us now first get accustomed to dualities by some famous examples, in order
to appreciate the problems we wish to address. Along the way we encounter
many concepts that will be used copiously throughout this work.

1.1 Kramers–Wannier duality and its extensions

1.1.1 Kramers–Wannier duality

It is fitting that the first such duality was discovered in the simplest statisti-
cal physics problem: the Ising model on a square lattice. Kramers and Wan-
nier noted that the partition function in terms of the variables si ∈ {−1,+1}
on lattice sites i, as a function of inverse temperature β, could be rewritten
in terms of variables σ〈i j〉 ∈ {−1,+1} on the lattice links 〈i j〉 as a function of
the dual inverse temperature β̃∼ 1/β [1–3]. The Ising model maps to another
Ising model, yet with a different coupling constant. As such, it is a math-
ematical identity; however, it hints to an alternative understanding of the
physical principles.

This is illustrated in figure 1.1(a). The black, solid lines are the real lat-
tice with on each lattice site arrows (“spins”) that can point in two directions.
Then on each link between two sites we can define a dual spin (blue) that
points up if the neighbouring sites are parallel, and down if they are anti-
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Figure 1.1: Ising spins on the square lattice (black). On each link of the lattice we can
define a dual spin (blue) that points up if the two neighbouring spin are aligned and
down when they are anti-aligned. The reciprocal lattice is shown in blue, dotted lines.
(a) A typical configuration of spins. Note that the number of dual down spins around
each plaquette is always even. (b) If we insist on having an odd number of dual down
spin in the plaquette with the red circle, the original spins become frustrated. The
frustration can be seen at the perimeter (dashed red), which also has an odd number
of down spins.

parallel. Except for the initial condition, the dual spins contain the same
amount of information as the real spins. This is the archetypical example of
duality.

Now things get really interesting. While for the real spins is it perfectly
fine to flip any one, possibly changing the energy but not violating any rules,
notice that the number of dual spins that are pointing down around one
plaquette is always even. Purely due to the definition in terms of the original
spins, there is a constraint or conservation law for the dual spins. What
happens if we try to break this law? This is pictured in figure 1.1(b). The
red circle indicates a plaquette with only one dual down spin. If we try to
recreate the original spins, starting bottom left, we see that there is no way
to decide where to put the final spin around this plaquette. This plaquette is
therefore said to be frustrated.

The frustrated plaquette is our first example of a topological defect: if one
counts the number of down spins around the perimeter of our dual lattice,
the number of dual down spins is also odd. The influence of the topological

1.1 Kramers–Wannier duality and its extensions 3



defect is felt all the way to the edge of the system.
The appearance of a constraint for the dual variables, and the ill-defined-

ness of the original variables when violating this constraint is a very general
principle, and one could say that this lies at the heart of all that will be
discussed in this thesis.

Another recurring theme is that the dual coupling constant β̃ is inversely
proportional to the original coupling constant β. This is therefore known
as a strong/weak duality or S-duality. One often uses perturbation theory
to be able to make calculations at all, and therefore the duality proves its
worth in the high-temperature regime where β̃ is small, and can be used as
the expansion parameter. This already indicates that the disordered state is
actually dually ordered.

1.1.2 Ising gauge model

The basic duality of the square lattice Ising model can be extended in several
ways. The energy of the Ising model above is invariant under flipping all
spins at the same time—a global transformation—but local spin flips will
in principle change the energy of the state. However, consider plaquette
variables that count whether that plaquette has an even or odd number of
dual spins down around it. Flipping all dual spins emerging from a lattice
site will leave those plaquette variables invariant: the evenness does not
change under such local spin flips. Instead of a global we have now a local
or gauge symmetry. Any model built out of these plaquette variables will
therefore have a gauge symmetry. This was first investigated by Wegner
[2–4], and is called Ising gauge model or Z2 lattice gauge theory.

The Ising model on the square lattice is dual to another Ising model on
the reciprocal square lattice. This self-duality is coincidental. Interestingly
the Ising model on a three-dimensional cubic lattice is dual to an Ising gauge
model on the reciprocal (cubic) lattice. This is known as a global/local dual-
ity: the global symmetry turns into a local symmetry for the dual variables.
Also this phenomenon is a key ingredient of this thesis.

1.1.3 XY -model and the superfluid

In the Ising model, the real, dual and plaquette variables take one out of two
values only. This can be extended to a larger number of discrete values, but
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moreover to a continuous set, in particular a real or complex number. If in
our picture of figure 1.1(a) the arrows on each site are of fixed length but can
rotate freely in the xy-plane, then with nearest-neighbour interactions this
is known as the phase-only model or XY -model. The XY -model is invariant
under rotating all spins over a fixed angle α, i.e. under global U(1)-rotations
eiα. An unordered XY -system has the arrows pointing in random directions
whereas when their orientation is correlated over considerable length scale,
it is an ordered system.

Since we are now dealing with continuous variables, we are equipped
with the concept of smoothness, which shall turn out to be an essential prop-
erty. Even in the ordered system, there will now be small fluctuations in
the direction of the arrows around their equilibrium position, which were
unavailable in the discrete systems above. Similarly, when we disturb the
ordered system from the outside, this disturbance will propagate through the
ordered system as the equivalent of a sound wave. This is called a Nambu–
Goldstone mode, and it communicates the rigidity of the order. Goldstone
modes are present in any ordered system of continuous variables—this is
the famous Goldstone theorem [5–7]. Using a similar duality transforma-
tion as above, the Goldstone modes are expressed as dual gauge field, so it
is a global/local duality. Here we have the natural interpretation of gauge
fields are force carriers (cf. a photon), conveying the rigidity of the order
parameter.

The XY -model in the continuum limit is the simplest model that de-
scribes the freely propagating zero-sound mode in a superfluid, where the
arrows represent the superfluid phase variable. A superfluid in a rotating
vessel will show the formation of vortices, which are in fact the topological
defects. In the XY -model a vortex is a configuration where the direction
of the phase changes by a multiple of 2π when traversing a closed contour.
Therefore the vortices are the cause of the disordering of the phase rigidity.
Surely when the external angular momentum gets too large, the superfluid
will be destroyed entirely by the induced vortices.

1.1.4 Vortex unbinding transitions

But in the duality viewpoint, also thermal (or quantum) fluctuations cause
spontaneous formations of small vortex loops. These loops grow with rising
temperature, and then the thermal phase transition is also understood as

1.1 Kramers–Wannier duality and its extensions 5
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Figure 1.2: The phase transition in terms of vortex world lines. (a) In the ordered
phase, the dual coupling constant (the vortex line tension) is large, such that it is very
costly to form vortex lines. In spacetime they only appear as small loops of creation
and annihilation of vortex–anti-vortex pairs. (b) Increasing disorder amounts to low-
ering the dual coupling constant, so that the vortex loops grow. Across the phase
transition the loops have grown to the system size, and the proliferate throughout
the whole system. This picture should always be kept in mind when reading this
thesis.

the demise of order due to vortices.
This is best understood pictorially. At low temperatures, the formation

of vortex pairs will be heavily suppressed, and only small spacetime loops
of vortex–anti-vortex pairs will appear (Fig. 1.2(a)). But as temperature
rises, it becomes entropically favourable to let the vortex lines grow—this is
the dual equivalent of the increasing population of excited states with phase
orientations different than the purely ordered ground state. At the critical
temperature, these loops grow to be of the system size, and energetically the
vortex lines can now permeate the system freely (Fig. 1.2(b)). The phase (the
arrows) is completely disordered. This is referred to as the “vortex blowout”
or the “tangle of vortex world lines” and the phase transition is the “vortex
unbinding transition”.

In principle, the discrete model like the Ising models also undergo a
defect-unbinding transition, but the effect is more striking in the continu-
ous models: in 1966 Mermin and Wagner showed that a two-dimensional
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magnetic system will always disorder due to thermal fluctuations; this ac-
tually holds for any two-dimensional system, and is known as the Mermin–
Wagner–Hohenberg–Coleman theorem [8–10]. Therefore it came as a sur-
prise when Kosterlitz and Thouless, and independently Berenzinskii, showed
that there is a vortex unbinding transition in the two-dimensional XY -model
[11, 12]. This is commonly explained as: “this phase transition is not a order–
disorder phase transition”. I will have some comments on this issue in the
conclusions, chapter 7. This theme was expanded to external (spatial) sym-
metries by Nelson, Halperin and Young, which had the most impact for clas-
sical liquid crystals [13, 14]. In this context one speaks of defect-unbinding
transitions or defect-mediated melting.

Vortices are pointlike in two spatial dimensions, and the mnemonic for
the BKT transition is, also in 2+1 dimensions, the picture of Fig. 1.2. But
a vortex is a line in three spatial dimensions. Still the phase transition
cannot be anything different than the disordering of the phase variable. The
question arises if one can generalize the vortex blowout when the vortices
are not points but extended objects. We will show in chapter 3 that that is
indeed the case.

1.1.5 Phase transitions with gauge fields

If one were to promote the global U(1)-symmetry of the superfluid to a lo-
cal or gauge symmetry, this necessitates the introduction of a vector-valued
gauge field. This is precisely the situation in the superconductor, where the
massless photon field Aµ, a vector field with gauge symmetry, couples to the
superconducting phase, the Goldstone modes. The gauge field then under-
goes the famous Anderson–Higgs mechanism [15], and becomes massive. As
a result, the photon field is expelled from the superconductor, and there are
only massive, gapped excitations in the medium. Also the interactions be-
tween vortices in the superconductor become short-ranged, which shows in
the correlation functions of the dual variables. The simplest model that fea-
tures the Higgs mechanism is the Abelian-Higgs model, and in 2+1 dimen-
sions this is precisely how the vortex unbinding transition works. Therefore,
vortex duality often goes by the name of Abelian-Higgs duality, and the dis-
ordered XY -phase is in this context a “dual superconductor”.

Now a field with a local symmetry cannot undergo a phase transition
(spontaneous symmetry breaking) by itself, this is Elitzur’s theorem [16].

1.1 Kramers–Wannier duality and its extensions 7



Therefore it seems natural to argue that, in the superconductor, first the
‘superfluid’ order is established, and secondarily the gauge field follows the
symmetry breaking by coupling to the Goldstone mode. That is indeed the
point of view we will take in this thesis, and will even prove to be more than
just an equivalent description when identifying the massive modes in the
3+1 dimensional disordered superfluid and superconductor (chapters 3 and
5).

1.1.6 Going quantum

In recent years there has been increasing interest in phase transitions due
to the disordering effect of quantum fluctuations instead of thermal fluctua-
tions. Such phenomena are called quantum phase transitions [17].

It has long been noted (e.g. by Feynman [18]) that the quantum mechan-
ical weight factors in the path integral are just like Boltzmann factors if one
transforms to imaginary time t → iτ. As such, as a dynamical quantum field
theory in D dimensions is easily mapped to a statistical mechanics problem
in D +1 dimensions, where the role of time is played by temperature. This
correspondence was originally used to carry over knowledge from thermal
physics to quantum many-body systems; for instance the textbook by Mahan
carries out many calculations at a finite temperature, to let temperature go
to zero at the very end [19].

In quantum phase transitions this is taken one step further. It is not just
equilibrium physics, but also phase transitions that are closely mimicked.
One now has a coupling constant that represents the strength of quantum
fluctuations, and which is therefore the analogue of the temperature. For in-
stance, in high-temperature superconductors it is the number of free charge
carriers that plays this role (see §5.1.2). Despite the numerous similarities,
quantum phase transitions are more intricate and eventually richer than
thermal ones.

This is most prominently seen by the phenomenon of spontaneous sym-
metry breaking. In second-order phase transitions, the system spontane-
ously chooses one of many ground states, for instance one particular direc-
tion of the U(1)-spins. It will cost a lot of energy to change this order: it
is rigid. In classical, thermal systems, only one direction can be chosen.
But in quantum systems, any superposition of ground states is just as valid.
Therefore, the quantum system allows for much more interesting ordering
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patterns. Also the excitation spectrum is affected in a similar way.

In much of what follows, the quantum nature of the phase transition is
not really emphasized. One needs to keep in mind though, that the system
under investigation are inherently quantum mechanical in nature, and they
are dominated by the Goldstone modes arising from quantum rigidity. Only
in chapter 6 will be make a sharp distinction between classical and quantum
systems, and discussion on the classicalness of quantum system takes place
in §7.2.4.

1.1.7 Other dualities

Up to know we have only discussed the simplest dualities: strong/weak and
local/global dualities in the Ising model and in U(1)-symmetry, which is the
simplest continuous symmetry, and is Abelian, i.e. two consecutive symme-
try transformations commute.

Higher symmetry groups, especially non-Abelian groups such as SU(2)
for spins, are much more complicated; in particular, the “braiding” of vortex
(world) lines follows the symmetry structure, and may also be non-Abelian.
While this opens up many interesting avenues such as in the fractional
quantum Hall effect and topological quantum computation, it leads to am-
biguities in defining the tangle of vortex world lines as the disordered state.
There has be some progress on the mathematical side using quantum groups
or Hopf algebras [20–26].

Dualities are prevalent in string theory, in fact they are one the appealing
mathematical features of that framework. In this context, the strong/weak
duality is called S-duality. In several instances it relates one string theory
to another. The underlying principle is the same: local variables one side
turn into extended or topological objects on the other side, which unbind as
the dual coupling constant grows smaller.

Almost all of what follows focussed on the Abelian U(1)-symmetry. Only
in chapter 6 we will passingly address the space groups of general relativity
and of elasticity. Trouble is avoided by focussing on the translations sub-
group, which is Abelian.

1.1 Kramers–Wannier duality and its extensions 9



1.2 The road to higher-dimensional vortex duality

The application of the Abelian-Higgs duality to many-body physics had been
identified and studied for over three decades [27–36]. Even though it is still
unfamiliar to many researchers in the field, once the basic concept has been
grasped, the framework is quite simple and rather elegant. One reason why
it remains to reside in relative obscurity may be that it has not really led to
new predictions, but had been confined to placing known results in a differ-
ent light.

Furthermore, vortex duality has been mostly restricted to 2+1 dimen-
sions. The reason, which we shall discuss extensively in §2.2, is that in
that case the vortices act just as point particles do: in spacetime they trace
out world lines, and we capture those in a regular quantum field theory. In
higher dimensions, the vortices becomes extended objects like lines or sur-
faces. As long as they are distant from each other (strong coupling limit of
the vortices), the duality works fine: dual gauge fields mediate interactions
between individual vortex sources. The dual gauge field is just the Hodge
dual of the Goldstone scalar field, i.e. a free d−2-form field, and the dynam-
ics of such a free tensor field is well known (see e.g. [37]).

However trying to effect the phase transition is really difficult. One
wishes to form a condensate of the extended vortex world sheets, in which
their number is no longer conserved. In other words: we are looking for a
quantum field theory of extended objects. This is the subject of string field
theory, and its progress has been severely limited [38, 39]. This was recog-
nized for instance in Ref. [40, §2.5], and therefore not pursued any longer.

It is amusing to trace back how this work was initiated originally. The
correspondence between spacetime deformations of general relativity (GR)
and elasticity in crystals has been noted by many authors. In recent years,
the mathematical physicist Hagen Kleinert has explored this relation in
depth by imagining a “world crystal” deformed by topological defects [41, 42].
Then the defects are like sources of curvature and the stress tensor cor-
responds to the Einstein tensor. He also recognized that the dynamics is
slightly off, leading to wrong correlation functions, and tried to solve this
with a “floppy world crystal”, which is in a sense “looser” than an ordinary
crystal. The deeper reason is that even in the continuum limit the crystal re-
members that both translational and rotational symmetry are broken, while
GR is practically translationally invariant (see §6.2).
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A different proposal was put forward by Kleinert and Zaanen [43] that
GR does not correspond to a crystal, but to a quantum liquid crystal. In such
a material, part of the spatial symmetry is restored by reviving translational
invariance. The route to this symmetry restoration is precisely via the un-
binding of topological defects, in this case the crystals dislocations. While the
claim was made that this should hold for any dimension, the calculation was
done in 2+1 dimensions only. However, gravity in 2+1 dimensions is simple,
or boring, in the sense that there are no propagating modes—no gravitons.
The real magic happens in four spacetime dimensions, where GR predicts
two graviton polarizations as massless spin-2 modes. Gravitons have not
been detected directly, and a huge effort is currently invested to find them in
the form of gravitational waves [44].

Thus, I set out to identify the hydrodynamic modes of quantum liquid
crystals in 3+1 dimensions that should correspond to gravitons, building
upon the work done by Cvetkovic and Zaanen in 2+1 dimensions [31, 40,
45]. Many parts are readily generalized to higher dimensions, but soon we
bumped into the obstacle mentioned above: the unbinding transition of ex-
tended topological defects in higher dimensions. Therefore it was necessary
to take a few steps back, to really comprehend where the difficulties in the
vortex duality lie.

It was fortunate that at about that time, Marcel Franz just published
a work on this topic [46], continuing an idea by Rey [47] into the realm
of condensed matter physics. Some research had in fact been done, starting
with Marshall & Ramond in the context of string theory [48]. These attempts
take the dual gauge field as the central object and start from there. Then it
is logical to extrapolate the Anderson–Higgs mechanism from vector fields
to tensor fields and suggest that the vortex condensate will turn the higher-
form gauge field massive. Another approach was taken in Ref. [49].

However, we soon noted that there was a flaw in this argument, which
leads to an overcounting in the number of degrees of freedom. In condensed
matter physics we often have the advantage that the systems under con-
sideration are accessible in the laboratory, in computer simulations, and by
several theoretical approximations. As such, we knew that the vortex dual-
ity in the continuum XY -model should eventually reproduce the results of
a firmly established lattice model, namely the Bose-Hubbard model. This
model has been realized almost perfectly in cold atom experiments [50].

1.2 The road to higher-dimensional vortex duality 11



Our guiding principle was therefore to obtain the characteristics of the
Mott insulating state (the strong-coupling limit of the Bose-Hubbard model)
from the vortex condensate, in particular a doublet of degenerate gapped
modes in any dimension. In other words: we needed to generalize those
properties of the vortex duality from 2+1 to higher dimensions that carry the
information of these massive propagating modes. Naively Higgsing the dual
tensor gauge field will not do this for you. We were finally able to perceive
that one should focus on the conserved currents rather than on the dual
gauge fields, and this enabled a comprehensive generalization of the vortex
duality which should hold for any order–disorder transition in condensed-
matter systems in any dimension higher than two (chapter 3).

As we struggled through unexplored territory, it became clear that the
vortex lines as spacetime world sheets interacting via dual gauge fields con-
tain a huge amount of information that can be extracted directly in the
dual language. In condensed matter physics, most work on vortices is re-
lated to laboratory-based setups in superconductors and superfluids, and
the mathematical niceties of extended defects that play a large role in for
instance cosmology and string theory are glossed over or not even acknowl-
edged. Conversely the fact that a vast body of knowledge on vortex lines has
been collected does not reflect back on the high-energy community, which is
demonstrated by the unwillingness to admit what are called Nielsen–Olesen
strings are just relativistic Abrikosov lines, and what is called the Abelian-
Higgs model is just relativistic Ginzburg–Landau theory.

In this light, even on the weakly-coupled side of the phase transition, the
electrodynamics of Abriksov vortices turns out to be completely contained in
the dual, relativistic description of the vortex world sheet. By incorporating
the time direction on even footing, the well-known magnetic equations are
directly generalized into similar equations for the electric field. It turns
out that all basic effects of vortex electrodynamics are captured in a single
equation, which is the subject of chapter 4.

The most interesting aspect of the duality is that it is truly dual: the
vortex condensate supports vortices of its own, and when these condense we
are back to the original weak-coupling phase (see §§2.4.6, 3.4.5). This is not
just an enjoyable gimmick, but moreover a true physical prediction. Already
present in neutral 2+1 dimensional systems, it is most striking in charged
3+1 dimensional systems. Where the defects in superconductors are Abriko-
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sov vortex lines of magnetic flux, the duality suggests vortex lines of electric
current in Bose-Mott insulators. This unexpected result may be directly ac-
cessible for experimentalists to find in underdoped cuprate superconductors,
and will be investigated in chapter 5.

Now that the vortex duality has be generalized to higher dimensions for
the simple U(1)-symmetry superfluids and superconductors, we can finally
direct it to the original problem of gravitons in quantum liquid crystals. Un-
fortunately the full calculation is not yet completed to include in this the-
sis. However, the wisdom acquired in chapter 3 demotes that calculation in
terms of gauge fields to be of secondary importance, at least in the relativistic
limit. The conserved currents (the stress tensor c.q. Einstein tensor) dictate
the physical content of the model, and symmetry considerations do the rest.
In fact, the local conservation law of the currents and the emergence of a
conserved quantity in the vortex condensate, i.e. the density of the vortex
liquid, are in harmony and closely connected. This general principle follows
from the duality construction, and is established in condensed matter phy-
sics under the name of emergent gauge invariance. In the final chapter 6 we
will show that the two gauge principles are indeed opposite sides of the same
coin. Then we come full circle by illustrating these emergence phenomena
in quantum liquid crystals, and show that a quantum nematic liquid crystal
has to correspond to the linearized approximation of gravity, containing the
two graviton modes.

We shall start off with one chapter of preliminary material (ch. 2) that
collects known results on which the rest of the work is built. In the conclud-
ing part (ch. 7) we summarize all obtained results, try to contextualize their
impact on condensed matter physics and beyond, and present open questions
and new waypoints as directions of research.

1.3 Conventions

vortex duality I shall use the term “vortex–boson duality” throughout this
thesis, or “vortex duality” tout court. This exactly describes what is happen-
ing, and is completely unambiguous. Alternative names are “XY-duality” or
“Abelian-Higgs duality”. The latter is only applicable in 2+1 dimensions, but
quite common in the literature. Furthermore here we dualize the Goldstone
boson of the Abelian-Higgs model, whereas in high-energy physics often the
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Figure 1.3: We often use two coordinate systems related to the momentum pµ of
the gauge particle. In the (τ,L,T)-system (dotted lines), the temporal direction is
preserved, and the spatial ones are separated in longitudinal and transversal. This
system is useful in the Coulomb gauge and when Lorentz invariance is broken. In a
relativistic context, more appropriate is the (∥,⊥,T)-system (solid lines), where the τ

and L-directions are rotated so that one is parallel to the spacetime momentum pµ.
This direction ∥ is also called longitudinal. The spatial-transversal directions are the
same as in the previous system. In higher dimensions D +1, there are simply more
spatial-transversal directions T1, . . . ,TD−1.

gauge field is dualized.

metric In relativistic expressions we use the “spacelike convention” for the
Minkowski metric: ηµν = diag(−1,1,1,1). The reason is that the spatial parts
will carry the same sign as the quantities in common static, non-relativistic
expressions, such as the Hamiltonian. We will often work in imaginary time
t → iτ, with Euclidean metric δµν = diag(1,1,1,1). Then the integrand in the
path integral reads eiS/ħ → e−SE/ħ and looks like a Boltzmann factor. For
the momentum i∂µ → pµ we use pµ = (pτ,q) = ( 1

cω,q). In imaginary time the
frequency here is strictly speaking a Matsubara frequency ωn, but unless
there is room for confusion, we suppress the label n.

Fourier components It is often useful to use coordinate systems related to
Fourier components, as shown in figure 1.3.
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units Wherever dimensionful quantities are present we express them in
SI-units, for which the Ampère–Maxwell law reads,

∇×B− 1
c
∂tE=µ0J. (1.1)

This is to be compared to this relation in the quite common Gaussian cgs-
units,

∇×B− 1
c
∂tE= 4π

c
J. (1.2)

The reason for this choice is that in relation to experiments it is easier to
refer to Ampères than to statcoulombs per second. Additionally it will turn
out to be quite useful to keep around the magnetic constant µ0, as it signals
contributions from the Maxwell electromagnetic field as opposed to electric
current due to moving charges.

current There will repeatedly appear two kinds of sources or currents in
this thesis: the electromagnetic current (density) and the vortex current.
Since they do both act as current/sources in the equations, both are repre-
sented by some form of the conventional letter J. For clarity, the vortex
current will always carry a superscript label V to distinguish is from the ma-
terial current in superconductors and Mott insulators. Vortex currents in
the superfluid/superconductor are denoted by the Roman symbol JV, and in
the Mott insulator by the script symbol J V.

spacetime dimensions A capital letter “D” will be used when referring
to exclusively spatial dimensions, and a small letter “d” when referring to
spacetime dimensions. Thus a 2D particle traces out a world line in 2+1d
spacetime.
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Chapter 2

Preliminary material

Here we present some material that is not at all new, but on which later
parts of this work are based. We only include discussion as far as is needed
to understand the following chapters of this work.

2.1 The Ginzburg–Landau model

Here we shall very shortly recap the overly familiar Ginzburg–Landau mo-
del of superconductivity, because all of the following work will use the same
order parameter language. As such it is good to set the stage such that
one can always compare with well-established results, see for instance Refs.
[28, 51].

2.1.1 Superfluid

In 1937 Lev Landau proposed a phenomenological field-theoretical model
that was capable of capturing the essential features of continuous or second
order phase transitions. It centred around the concept of an order parameter
Ψ(x), which is a function on every point in space, i.e. a field. It is capable
of distinguishing between ordered and disordered phases: in the disordered
phase, its average or expectation value is zero 〈Ψ〉 = 0, while in the ordered
phase it is non-zero 〈Ψ〉 =Ψ0 6= 0. Landau established the simplest form that
can show this behaviour,

E =
∫

d3x
1
2
|∇Ψ|2 + 1

2
α|Ψ|2 + 1

4
β|Ψ|4. (2.1)
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HereΨ is a complex scalar field. The first term represents fluctuations in the
order parameter, and can therefore be regarded as the kinetic energy. The
second term is as a mass for the order parameter, and the third causes the
energy to always be bounded from below. When α > 0 the potential energy
is minimized by |Ψ| = 0 and we are in the disordered phase. But when α< 0,
the potential energy has minima at |Ψ| = ±√|α|/β. This is sometimes called
the ‘Mexican hat potential’.

Because Ψ = |Ψ|eiϕ, the phase can still freely fluctuate, and in the so-
called London limit where the amplitude is fixed everywhere |Ψ|(x)=Ψ0, the
energy reduces to,

E =
∫

d3x
1

2g
(∇ϕ)2, (2.2)

modulo constant terms, and g poses as the coupling constant. This very sim-
ple model actually describes the dynamics of a superfluid, with the massless
zero sound mode ϕ and massive density fluctuations |Ψ|.

The parameter α is usually taken as a function of temperature, chang-
ing sign at the critical temperature Tc. This model then also contains the
scaling laws at the critical point up to the mean field level, and as such
partly explains universality, the phenomenon that microscopic details are
often unimportant in capturing the collective behaviour of many-body sys-
tems.

2.1.2 Superconductor

It was not until 1950 that this powerful concept was extended to charged
superfluids, i.e. superconductors with the help of Vitaly Ginzburg. This was
done by minimal coupling to the electromagnetic gauge potential,

E =
∫

d3x
ħ2

2m∗ |(∇− i
e∗

ħ A)Ψ|2 +α|Ψ|2 + 1
4
β|Ψ|4 + 1

2µ0
(∇×A)2. (2.3)

Here m∗ and e∗ are the mass and the electric charge of the charge carriers
(Cooper pairs as we know now). From this energy functional, we can derive
the Ginzburg–Landau equations of motion,

− ħ2

2m∗ (∇− e∗

ħ A)2Ψ+αΨ+β|Ψ2|Ψ= 0 (2.4)

1
µ0

∇×∇×A− ħe∗

m∗ |Ψ|2(∇ϕ− e∗

ħ A)= 0 (2.5)
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From the first equation, when there are no external electromagnetic fields
present, one can derive the coherence length ξ = ħ2

m∗|α| as the typical length
scale over which the value of |Ψ|(x) still fluctuates.

By action with the curl operator ∇× on the second equation, using the
definition of the magnetic field B =∇×A and the Maxwell equation ∇·B = 0,
one finds,

λ2∇2B−B=− 1
2π
Φ0(∇×∇)ϕ. (2.6)

Here we defined the London penetration depth λ =
√

m∗
µ0|Ψ|2 e∗2 and the flux

quantum Φ0 = h/e∗. When the phase field ϕ is smooth the right-hand side
vanishes, and this equation then tells us that the magnetic field is expelled
from the superconductor, as it falls off exponentially over length scale λ. This
is called the Meissner effect. We also identify,

Js =−δE
δA

= ħe∗

m∗ |Ψ|2(∇ϕ− e∗

ħ A), (2.7)

as the supercurrent. Then Eq. (2.5) can also be written as,

∇×B=µ0Js, (2.8)

which is the non-dynamic part of the Ampère–Maxwell law. Furthermore,
acting with the curl operator on Eq. (2.7), we find the London equation,

∇×Js =− 1
µ0λ2 B. (2.9)

where we again have used (∇×∇)ϕ= 0 for a smooth phase field.
It was Alexei Abrikosov’s great insight [52] that when λ> ξ/p2, it is ener-

getically more favourable to let the magnetic field penetrate through vortex
lines than to expel it altogether. Such a material is called a type-II super-
conductor. We will see in the next section that in the presence of vortices,
ϕ becomes multivalued, and then we should identify (∇×∇)ϕ= 2πδ(2)(x)N, a
2-dimensional delta function in the plane orthogonal to the vortex line times
the winding number N (see also §2.2.3). Eq. (2.6) then shows that the vortex
line is magnetic field, that falls off exponentially away from the centre.

We can take a line integral of (2.5) deep within the superconductor where
B = 0 over a closed contour C around a vortex line. We find using Stokes’
theorem,∫

S
dS ·B=

∮
C

dx ·A= 1
2π
Φ0

∮
dx ·∇ϕ=Φ0

∫
S

dS δ(2)(x)=Φ0N. (2.10)
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Here S is the area enclosed by the contour C . Thus we see that the magnetic
flux through S and therefore through the vortex line is quantized in units
of Φ0.

The electrodynamics of Abrikosov vortices is derived from a relativistic
field theory in chapter 4.

2.2 Topological defects

Once one finds oneself in an ordered state, a natural question is how it can be
made disordered. Disorder is caused by defects, a simple example of which
would be an interstitial atom or ion in an otherwise perfectly regular crystal
lattice. Such defects cost energy to make, but usually only a fixed amount in-
dependent of the system size. As such their disordering capabilities are also
not that great. It turns out that most forms of disorder are due to topological
defects, the energy of which increases with the system size. They are thus
energetically very expensive, and will in strongly ordered systems only ap-
pear in confined combinations, often pairs, which are said to be topologically
neutral. Increasing disorder amounts to deconfining such pairs (see §1.1.4).

To understand what topological defects are and how they are classified
for a specific ordered medium, one needs the mathematical machinery of
homotopy theory. It explores the concept of continuity, which turns out to
be the property of relevance in describing ordered states and the topological
defects they can support. We shall not delve deeply into these matters; a
good introduction is found in the review by David Mermin [53]. Here we will
quote some of the results as needed for the Abelian U(1)-symmetry we are
exclusively interested in.

2.2.1 Order parameter space

As explained above in §2.1.1, an order parameter is a continuous function on
every point in space. If there are long-range correlations between the values
of this function, the state is said to be ordered. The domain of the function
is called “order parameter space” M , and it can be a number, vector or any
continuous manifold. We are interested in superfluids and superconductors,
with order parameter a complex scalar field Ψ = |Ψ|eiϕ. In the completely
ordered state the amplitude obtains a so-called vacuum expectation value
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(a) Phase ordered

C

(b) Single vortex (c) Vortex pair

Figure 2.1: Configurations of the phase field in the plane. (a) A trivial state with
the phase perfectly ordered. (b) Configuration with a N = 1 vortex present. Taking
the line integral around the contour C will give 2π. The contour and therefore the
hatched area are arbitrary along as they comprise the vortex core. (c) A vortex–anti-
vortex pair. Far away from these vortices the phase is ordered, and therefore this
configuration is topological neutral.

(VEV) that is non-zero and constant throughout the medium. The phase of
Ψ has long-range correlations. Small fluctuations around this VEV cost some
energy but vanishingly little as the fluctuations die out. These fluctuations
are actually the Goldstone modes, and it is easy to see that they can only
arise for continuous order parameters, as there is no such thing as a small
fluctuation in a discrete set. The Goldstone modes communicate the rigidity
of the order parameter.

Let us first take the example of the U(1) order parameter to illustrate the
principles. When the amplitude |Ψ| has obtained an expectation value, then
only the phase ϕ is left, which can be pictured as an arrow on every point in
space. If the system is spatially 2-dimensional, the order parameter space
can be conveniently drawn just on real space. Consider the configurations in
figure 2.1. Without a defect present, the phase is perfectly ordered, barring
small fluctuations. When however the phase around a closed contour makes
a 2π rotation, there must be a singular point where the phase is not well
defined. This point is the topological defect, called a vortex for a U(1)-field.
Wherever we draw this contour, the phase change is always 2π, which is the
reason for the denomination ‘topological’. We also see that a configuration of
a vortex and an anti-vortex together is topologically neutral.
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2.2.2 Homotopy groups

In the general case, due to thermal or quantum fluctuations, the system is
free to explore part of configuration space by small perturbations around the
present, ordered, state. As such we can define configurations to be equiva-
lent if they differ by continuous deformations only. All of configuration space
is then divided up in equivalence classes, and one class cannot be trans-
formed into another continuously. There is one trivial class, and all the oth-
ers are said to contain topological defects. It turns out that the equivalence
classes are classified by the homotopy groups of the order parameter space.
Mathematically, the nth homotopy group πn(M ) has as elements all the dif-
ferent ways in which an n-sphere Sn can be mapped onto the space M . For
instance the first homotopy group (or fundamental group) π1(M ) classifies
how ‘lassos’ can or cannot be contracted into a point.

From the drawings in figure 2.1, we see that such lassos characterize
point defects in a 2-dimensional plane. But in 3 dimensions, we would be
able to pull the lasso ‘over’ the singular point. If we had a singular line, the
lasso cannot be contracted. For this reason, the n-th homotopy group classi-
fies D−n−1-dimensional defects in D-dimensional space. Thus π1 classifies
point defects in 2D and line defects in 3D; and π2 classifies point defects in
3D. Now it is a result of homotopy theory that πn

(
U(1)

)
is isomorphic to the

trivial group except for n = 1, where it is the set of integers representing the
winding numbers. Therefore the only topological defects possible are point
defects in 2D and line defects in 3D, both characterized by the winding num-
ber N.

2.2.3 Multivalued fields

Almost all of the properties of vortices (or topological defects in general) can
be ascribed to the singular point or line in the vortex core. The singularity is
by definition not well-behaved analytically. Yet it turns out to be very fruitful
to try and apply field-theoretical techniques as much as we can. In fact this
is the central topic of Kleinert’s textbooks [28, 41, 42]. For us it suffices to
establish the following identity. The phase winds in units of 2π around the
vortex core, by traversing contour C . Thus the change of of the phase adds
up to 2πN, ∮

C
dϕ=

∮
C

dxm ∂mϕ= 2πN. (2.11)
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Let S be the area enclosed by C . In 3D it has a normal k that is parallel to
the vortex line. Then we formally apply Stokes’ theorem,

2πN =
∮
C

dxm (∂mϕ)=
∫
S

dSk εknm∂n(∂mϕ). (2.12)

Thus, if there is a vortex present N 6= 0 the left-hand side is not zero, and we
must conclude that the derivatives of the singular field ϕ do not commute.
Therefore we are led to identify,

εknm∂n∂mϕ(x)= 2πNδ(2)
k (x). (2.13)

Here δ(2)
k (x) is a 2-dimensional delta function in the plane orthogonal to k

centred around the vortex core. Since away from the core the phase field is
smooth, the non-vanishing contribution is indeed purely attributable to the
singular point itself. In the sequel, we shall often split the phase field in a
smooth and a multivalued part,

ϕ=ϕsmooth +ϕMV, (2.14)

where εknm∂n∂mϕsmooth(x) = 0 ∀x, whereas the multivalued part satisfies the
relation above. Even though the derivatives of a multivalued field do not
commute, it does satisfy the integrability condition, [28, 42],

∂k(εknm∂n∂mϕ)= 0. (2.15)

Regarded as a physical field, we define,

JV
k = εknm∂n∂mϕ= 2πNδ(2)

k (x), (2.16)

as the vortex current. It is conserved ∂k JV
k = 0, because of the integrability

condition above. These vortex currents are the central topic of this thesis.

2.2.4 Vortex world lines and world sheets

We have seen that for U(1)-fields there are pointlike vortices in 2-dimensional
and linelike vortices in 3-dimensional space. Now we regard these objects as
physical entities as moving in spacetime. The 2D vortex point (vortex pan-
cake in superconductivity parlance) then traces out a world line in space-
time, just as any particle would. But the 3D vortex line traces out a world
sheet. This is pictured in figure 2.2. In 2+1d the direction orthogonal to
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Figure 2.2: Vortices in 2+1d and 3+1d (a) A point vortex will trace out a world line.
The line element JV

κ can be decomposed in a temporal density part JV
t and a spatial

current part JV
k . (b) In 3D we have a vortex line, here in the xy-plane, since the

third spatial dimension cannot be drawn. The world sheet is built up out of surface
elements JV

κλ
. The temporal components JV

tl represents the density of vorticity of the
line along l, and the spatial components JV

kl are the flow in direction k of the line
along l.

the plane is always the time direction, but in a relativistic treatment we
consider the vortex current JV

κ = εκνµ∂ν∂µϕMV where the indices take values
in (t, x, y). JV

κ (x) is just the line element of the vortex world line at x. The
temporal component JV

t is the density of vorticity defined in Eq. (2.16). The
spatial components are the ‘current’ related to this density, such that the
conservation law ∂κJV

κ = 0 is in fact the continuity equation ∂t JV
t +∂k JV

k = 0.
It is now obvious how to generalize to 3+1 dimensions. The singular field

ϕMV has the same properties as before, and since in four dimensions the Levi-
Civita symbol has four indices, our vortex current becomes an antisymmetric
2-form field,

JV
κλ = εκλνµ∂ν∂µϕMV. (2.17)

The field JV
κλ

(x) locally represents a surface element of the vortex world
sheet, defined by two non-parallel directions κ and λ. Similar as before,
the temporal components JV

tl are the density of vorticity of the vortex line
along l. A spatial line integral around this component will result in 2πN; the
normal of the area enclosed by this contour is set by the two directions t and
l. The purely spatial components JV

kl represent the flow in the direction k
of the vortex line along l. There are three independent continuity equations
∂κJV

κλ
= 0.
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This interpretation of the vortex current as field-theoretical objects will
turn out to be especially useful for vortices in superconductors (chapter 4)
and Mott insulators (chapter 5).

2.3 The Bose–Hubbard model

The study of quantum phase transitions concerns the collective behaviour of
quantum matter at zero temperature. In many respects they resemble ther-
mal phase transitions where one just has to replace thermal fluctuations by
quantum zero-point fluctuations. Yet time plays a special role, and it is use-
ful to consider extremely simple models that do feature the basic properties
of quantum phase transitions. The simplest one would be the quantum Ising
model where the dynamical variable can take only two values. One step fur-
ther is to take a continuous variable and this is called the XY -model or the
quantum rotor model. These systems are studied in depth in Sachdev’s text-
book [17]. It turns out that the latter model in the ordered state is just the
quantum field theory of a free scalar field, and as such describes Goldstone
modes such as the phase mode in a superfluid. The quantum phase transi-
tion arises when this phase, ordered in the superfluid, fluctuates so wildly
that the long-range correlations disappear. We will see in the next section
that this is equivalent to the formation of a condensate of vortices.

Here we will show how another simple model, called the Bose–Hubbard
model [54], reduces to the quantum XY -model. The reason for this is twofold.
Firstly, this model describes bosons hopping on a lattice but repelling each
other locally. This is a realistic approximation of some real-world systems,
and is in fact almost perfectly realized in cold atom experiments in opti-
cal lattices [50]. Furthermore the phase dynamics is also seen in arrays of
Josephson junctions [55, 56]. The second reason is that it shows explicitly
that the state across the phase transition is a Bose-Mott insulator. There-
fore the disordered state after unbinding of the vortices must be equivalent
to this insulating state. We will use this argument in chapter 3 to lead us to
the understanding of the vortex unbinding transition in higher dimensions.
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2.3.1 Bose–Hubbard Hamiltonian

We will start out from a simple Hamiltonian model for lattice bosons, and
map it onto the Euclidean action of a continuum field theory, which is the
most useful form for the quantum phase transition. The Hamiltonian of the
Bose-Hubbard model on a D-dimensional hypercubic lattice is,

HBH =− t
2

∑
〈i j〉

(b†
i b j +b†

jbi )−µ
∑

i
ni + U

2

∑
i

(ni −1)ni. (2.18)

Here b†
i and bi are boson creation and annihilation operators on lattice site i,

that satisfy the commutation relation [bi ,b
†
j] = δi j. The sum over 〈i j〉 is over

nearest-neighbour sites. The number operator is ni = b†
i bi . Furthermore,

the energy scales are the boson hopping t, the on-site repulsion U and the
chemical potential µ. We shall assume that the chemical potential is tuned
so that there is a large integer number n0 of bosons per site. We call this
“zero chemical potential”. The commutation relation for n and b is,

[ni,b j]= [b†
i bi ,b j]= 0+ [b†

i ,b j]bi =−δi jbi . (2.19)

Similarly [ni,b
†
j]= δi jb

†
i . To recognize quantum phase dynamics consider the

substitution,

b†
i =

p
nieiϕi , bi = e−iϕi

p
ni. (2.20)

Here ϕi is a real scalar variable. The commutation relation for n and ϕ

follows,

[ni,b j]= δi jbi ⇒ [ni,e−iϕ j
√

n j]=−δi je−iϕ j
√

n j

⇒ [ni,e−iϕ j ]=−δi je−iφ j . (2.21)

This commutation relation corresponds to [ni,ϕ j]=−iδi j, which one can check
via the Taylor expansion of the exponential. In this way we have switched
from a description in terms of the conjugate variables b and b† into the con-
jugate variables n and ϕ. Substituting this definition in Eq. (2.18) leads
to,

H =−J
∑
〈i j〉

(1−cos(ϕi −ϕ j))+ U
2

∑
i

(ni −1)ni. (2.22)

Here we have defined J = tn0 and added a constant term for later conve-
nience. The physics of the weak- and strong-coupling limits is immediately
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clear: for large t/U, we have a superfluid where spatial fluctuations in the
phase ϕ are very costly; for small t/U the on-site repulsion dominates, the
bosons spread out evenly to minimize U

∑
i n2

i and are thereafter confined to
their lattice sites: the Mott insulator.

2.3.2 Legendre transformation and continuum limit

Since we are pursuing a relativistic quantum calculation, we shall move
from a Hamiltonian to a Lagrangian formalism. The commutation rela-
tion [ϕi,n j] = iδi j is to be compared to the canonical commutation relation
[ϕi,π j]= iħδi j. We can therefore regard as the canonical momentum π j =ħn j.
The velocity is defined by,

∂tϕ j = ∂H
∂π j

= U
ħ2π j. (2.23)

From this we find the Lagrangian by Legendre transformation,

L =∑
i
πi∂tϕi −H = ħ2

2U

∑
i

(∂tϕi)2 − J
∑
〈i, j〉

(
1−cos(ϕi −ϕ j)

)
, (2.24)

which also has units of energy. Now we can take the continuum limit in D
space dimensions,

aD ∑
i
7→

∫
dD x, ϕi −ϕ j → a∇ϕ(x), (2.25)

where a is the lattice constant. After this and expanding the cosine to lead-
ing order we find,

L = 1
aD

ħ2

2U

∫
dD x (∂tϕ)2 − J

2
1

aD

∫
dD x a2(∇ϕ)2. (2.26)

The partition function is Z = ∫
Dϕ ei/ħS, with S the action,

S =
∫

dt L = 1
aD

∫
dtdD x

[ ħ2

2U
(∂tϕ)2 − J

2
a2(∇ϕ)2

]
. (2.27)

Thus, the Bose-Hubbard model at zero chemical potential is equal to the
XY -model. We proceed to imaginary time t = iτ to give the partition function
with the Euclidean action Z = ∫

Dϕ e−
1
ħ SE where,

SE = 1
aD

∫
dτdD x

[− ħ2

2U
(∂τϕ)2 − J

2
a2(∇ϕ)2

]
≡

∫
dτdD x

1
2

Ja2−D [− 1
c2

ph

(∂τϕ)2 − (∇ϕ)2
]
. (2.28)
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2.3.3 Equivalence to superfluid/Mott insulator transition

This is to be compared with the quantum action for a superfluid (cf. Eq.
(3.13) in Ref. [54]),

SE =
∫

dτdD x
[− 1

2
ħ2κ(∂τϕ)2 − 1

2
ħ2 ρs

m∗ (∇ϕ)2
]
. (2.29)

Hence we identify the compressibility κ= 1
UaD , the superfluid density divided

by the boson mass ρs
m∗ = Ja2−D

ħ2 and the superfluid velocity cph = a
ħ
p

U J. Defin-
ing the relativistic derivative ∂ph

µ = ( 1
cph

∂τ,∇), we find a convenient form of the
action,

SE =
∫

dτdD x − 1
2

Ja2−D (∂ph
µ ϕ)2. (2.30)

One can worry what happened to the on-site repulsion term ∼ U? In fact,
in the relativistic picture everything is contained in the fluctuations of the
phase variable ϕ. In the superfluid the fluctuations are suppressed. But for
small values of J/U ∼ J2/c2

ph, the temporal correlations ∂τϕ fluctuate heav-
ily, signalling the arbitrary creation and annihilation of vortex excitations.
Thus, the destroying the superfluid takes us across the phase transition, and
the disordered superfluid is equivalent to the Bose-Mott insulating state.

Indeed, this model has two stable fixed points, separated by a continuous
phase transition governed by XY -universality in D+1 dimensions [17, 28, 32,
33, 54]. The scaling limit physics of the two stable states can be discerned by
inspecting the g ∼p

U /J → 0 (weak coupling) and g ∼p
U /J →∞ limits. In the

weak coupling limit the U(1) field breaks symmetry spontaneously and the
theory describes the superfluid state. The small fluctuations in the phase
field ϕ correspond either with a single Goldstone boson corresponding with
the zero sound mode of the superfluid, or with the spin-wave of the quantum
XY model. The strong coupling limit has an integer number of bosons n0 per
site as imposed by the choice of chemical potential. The effect of the hopping
will be to create a ‘doublon’ n0+1 and ‘holon’ n0−1 pair on two different sites
i and j: n0

i n0
j → (n0−1)i(n0+1) j. This will cost an energy U: the system turns

into a Bose-Mott insulator.

2.3.4 Emergent gauge invariance

The localization of the bosons implies a phenomenon that is well-known in
condensed matter physics [57, 58]. This simple Mott localization has in fact
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U

Figure 2.3: Cartoon picture of a Mott insulator. Because of the integer number of
particles per site, and their strong mutual repulsion, the ground state has the same
number of particles on each site. The Mott gap energy must be paid both for adding
and for removing a particle. An elementary excitation is creating a doublon–holon
pair; both the doublon and the holon can then propagate throughout the system with-
out further energy penalty. This is the doublet of gapped modes.

a profound consequence: it causes a ‘dynamical’ emergence of a gauge sym-
metry. The global U(1) symmetry controlling the weak coupling limit gets
‘spontaneously’ gauged into a compact U(1) local symmetry. In the super-
fluid b†

i →
p

n0eiϕi and the phase ϕi can undergo the global U(1) symmetry
transformation of the superfluid. However, in the strongly-coupled Mott in-
sulator the number operator of the bosons is sharply quantized on every site,

n̂i|Ψ(Mott)〉 = n0|Ψ(Mott)〉 (2.31)

and this in turn implies a gauge invariance under the multiplication by an
arbitrary phase αi,

b†
i → eiαi b†

i

bi → e−iαi bi

n̂i = b†
i bi → n̂i. (2.32)

This is the celebrated ‘stay-at-home’ U(1) gauge invariance that has played
a prominent role in the various gauge theories for high-Tc superconductivity
developed for the fermionic incarnation of the Hubbard model [58]. We will
return to this interesting feature in chapter 6.

2.3.5 Mode content of the Bose-Mott insulator

One can also immediately read off the nature of the collective modes of the
Bose-Mott insulator from the strong coupling limit. One can either remove
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or add a boson and the holon and doublon that are created can just freely
delocalize on the lattice giving rise to massive excitations with a mass 'U /2
given that the chemical potential is in the middle of the Mott gap (see Fig
2.3). The continuum theory we are dealing with requires that the length
scales are large compared to the lattice constant, a regime that is quite
different from the lattice cut-off regime exposed here. The continuum de-
scription becomes literal close to the quantum phase transition but given
adiabatic continuity we know that the strong coupling limits are still rep-
resentative for the mode counting and so forth. Starting close to the criti-
cal coupling on the Mott side, the Mott physics takes over from the critical
regime at the correlation length (or time). At larger scales the stay-at-home
gauge invariance takes over, although it now involves a volume with a di-
mension set by the correlation length. Accordingly, one will find the pair of
degenerate propagating holon/doublon modes which appear as bound states
that are pulled out of the critical continuum [31]. Similarly one finds on the
superfluid side of the quantum critical point the single zero sound Goldstone
boson at energies less than the scale set by the renormalized superfluid stiff-
ness that disappears at the quantum critical point.

The simple features we have discussed in this section are generic and
completely independent of the dimensionality of spacetime. Although per-
haps unfamiliar, they are easily identified in the context of the standard
Abelian-Higgs duality in 2+1d as discussed in the next section. In turn, they
will be quite helpful in giving a firm hold in our construction of the duality
in higher dimensions.

2.3.6 Charged superfluid

If we are interested in charged superfluids, i.e. superconductors, we must
minimally couple to the electromagnetic potential, or photon field. Now we
must recall that the gauge-covariant derivative acts on the superfluid order
parameter, which is a complex scalar field Ψ = p

ρseiϕ. Hence, the minimal
coupling prescription in the London limit (ρs constant), is,

|∂ph
µ Ψ|2 →|(∂ph

µ − i
e∗

ħ Aph
µ )Ψ|2 = ρs(∂ph

µ ϕ− e∗

ħ Aph
µ )2. (2.33)

Here e∗ is the electric charge of one boson, so of one Cooper pair. To preserve
gauge invariance, the temporal component of the gauge potential should
have the same velocity factor as the covariant derivative, and therefore we
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define Aph
µ = (−i 1

cph
V ,A). Then we include the Maxwell action for the dynam-

ics of the electromagnetic field, which is governed of course by the speed of
light c. Defining the electromagnetic field tensor Fµν = (∂µAν−∂νAµ) where
∂µ = ( 1

c∂τ,∇) and Aµ = (−i 1
c V ,A), the total action is,

SE =
∫

dτdD x
[− 1

2
Ja2−D (∂ph

µ ϕ− e∗

ħ Aph
µ )2 − 1

4µ0
F2
µν

]
. (2.34)

The identification of the dimensionful constant µ0 as the permeability of the
vacuum in units of N/A2 is accurate only in 3+1 dimensions, but that is
the case we will be mostly interested in anyway. We have established the
Euclidean action of the superconductor. The equations of motion obtained by
variation with respect to An are for instance (in real time, and substituting
Ja2−D =ħ2ρ/m∗),

1
c2 ∂t(−∂t An −∂nV )− 1

µ0
∂m(∂m An −∂n Am)− e∗ħρ

m∗ (∂mϕ− e∗

ħ Am)= 0, (2.35)

which is one of the Ginzburg–Landau equations.

2.3.7 Dimensionless variables

It is sometimes useful to rescale all variables to be dimensionless. For our
purposes this pertains especially to the charge of the dual gauge field (see
next section) which has to be 1 in these dimensionless units. Starting from
Eq. (2.34), we define the dimensionless variables denoted by a prime,

SE =ħS′
E, x = ax′, τ= a

cph
τ′, Am = ħ

e∗a
A′

m. (2.36)

We shall suppress the primes from now on. The dimensionless version of the
action Eq. (2.34) reads,

SE =
∫

dτdD x − 1
2g

(∂ph
µ ϕ− Aµ)2 − 1

4µ
F2
µν. (2.37)

Here the coupling constants are,

1
g
= Ja

ħcph
,

1
µ
= ħaD−3

µ0cphe∗2 . (2.38)

The first is always dimensionless, the last is dimensionless if D = 3, in other
dimensions one has to come up with a suitable replacement for the magnetic
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constant µ0. For the chargeless superfluids one lets e∗ → 0, which will leave
only,

SE =
∫

dτdD x − 1
2g

(∂ph
µ ϕ)2. (2.39)

2.4 Vortex duality in 2+1 dimensions

We will now perform the duality transformation of the superfluid action in
2+1 dimensions, and show how the phase transition is described as the pro-
liferation of vortices. In 2+1 dimensions the vortices are pointlike, and trace
out world lines in spacetime. Therefore their collective behaviour is captured
by just a quantum field theory as for ordinary point particles. For simplicity
we will proceed for the uncharged superfluid; the extension to a supercon-
ductor is straightforward by having the photon field tag along the duality
transformation, the results of which are briefly mentioned at the end of this
section. Here we show that vortices in a superfluid are just like charged par-
ticles with Coulomb interactions mediated by a dual gauge field. The phase
transition is the proliferation of the vortices, causing the interactions to be-
come short-ranged due to the Anderson–Higgs mechanism, which is exactly
like a superconductor in this analogy.

2.4.1 Dual variables

The quantum partition sum associated with the Euclidean action Eq. (2.39)
is the path integral,

Z =
∫

Dϕ e−
∫

L =
∫

Dϕ e−
∫ − 1

2g (∂ph
µ ϕ)2 . (2.40)

For small g fluctuations of the phase ϕ are costly and will be much sup-
pressed. This is the superfluid, and φ is the zero sound or phase mode.
Even though this is already a free theory, we can still linearize for the vari-
able ϕ by the introduction of an auxiliary variable wµ through a Hubbard–
Stratonovich transformation,

Zdual =
∫

DϕDwµ e−
∫ 1

2 gwµwµ−wµ∂
ph
µ ϕ, (2.41)

The auxiliary field wµ is a dual variable, in the sense that for this field the
coupling constant is g instead of 1/g. In canonical language going from ϕ
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to wµ amounts to a Legendre transform; the dual variables are in fact the
canonical momenta,

wµ =− ∂L

∂(∂ph
µ ϕ)

= 1
g
∂

ph
µ ϕ. (2.42)

The wµ is also the Noether current related to the tranformation ϕ(x)→ϕ(x)+α
under which (2.40) is invariant. In the superfluid we identify this as the
supercurrent. Integrating out the auxiliary field wµ from Eq. (2.41) will give
back the original partition sum Eq. (2.40).

2.4.2 Dual gauge field

When vortices are present in the superfluid, the otherwise smooth phase
variable ϕ is singular inside the core region (see Fig. 2.1(b)). We therefore
split it into a smooth and a multivalued part: ϕ=ϕsmooth +ϕMV. The multi-
valued part denotes vortices of winding number N via,∮

dϕMV = 2πN. (2.43)

We have,

Zdual =
∫

DϕMVDϕsmoothDwµ e−
∫

Ldual , (2.44)

Ldual =
1
2

gwµwµ−wµ∂
ph
µ ϕMV −wµ∂

ph
µ ϕsmooth. (2.45)

We can perform partial integration on the term with the smooth part of the
phase field to find,

Ldual =
1
2

gwµwµ−wµ∂
ph
µ ϕMV − (∂ph

µ wµ)ϕsmooth. (2.46)

Now we can integrate out ϕsmooth as a Lagrange multiplier for the constraint
∂

ph
µ wµ = 0. This constraint expresses the conservation of supercurrent and is

in fact the continuity equation for the supercurrent ∂twt +∇·w= 0. Thus we
see that the conservation of supercurrent is due to the smoothness of the
phase field. We can explicitly enforce this constraint by expressing it as the
curl of a non-compact U(1) gauge field,

wµ = εµνλ∂ph
ν bλ, (2.47)

which is invariant under the addition of the gradient of any smooth scalar
field ε(x),

bλ(x)→ bλ(x)+ε(x). (2.48)
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If we substitute this into Eq. (2.46) we find,

Zdual =
∫

DϕMVDbλF (bλ) e−
∫

Ldual , (2.49)

Ldual =
1
2

g(εµνλ∂
ph
ν bλ)2 −εµνλ∂ph

ν bλ∂
ph
µ ϕMV. (2.50)

Here F (bλ) is a gauge-fixing factor which we leave implicit from now on.
Because the gauge field is smooth everywhere, we can perform integration
by parts to leave,

Ldual =
1
2

g(εµνλ∂
ph
ν bλ)2 +bλεµνλ∂

ph
ν ∂

ph
µ ϕMV = 1

2
g(εµνλ∂

ph
ν bλ)2 −bλJV

λ . (2.51)

Here we have defined the vortex current JV
λ
= ελνµ∂ph

ν ∂
ph
µ ϕMV as in Eq. (2.16).

If we use the identity (εµνλ∂
ph
ν bλ)2 = 1

2 (∂µbν−∂νbµ)2 ≡ 1
2 f 2

µν, this becomes,

Ldual =
1
4

gf 2
νλ−bλJV

λ . (2.52)

This looks exactly like Maxwell electromagnetism in 2+1 dimensions, with
the fluctuating dual gauge fields bλ playing the role of the photon fields, and
the vortex currents JV

λ
are like electrically charged monopole sources. Note

that in these dimensionless units the charge of the coupling is 1. Because of
this correspondence we call the superfluid in this context the Coulomb phase
of the dual gauge fields. This equivalence is accidental in 2+1 dimensions,
as we shall discover in the next chapter.

2.4.3 Mode content of the Coulomb phase

To see that we indeed retrieve electromagnetism for the dual fields, let us
examine the two-point functions for the dual gauge field. In this context it is
most convenient to go to a coordinate system in which the spatial directions
are rotated to a longitudinal and a transversal component, see Fig. 1.3 on
page 14. In this (τ,L,T) coordinate system, the momentum vector reads pµ =
( 1

cph
ω, q,0). We are free to choose the Coulomb gauge ∂l bl = qbL = 0, such that

the longitudinal component is removed. The Lagrangian for the remaining
components is,

Ldual =
g
2

q2bτbτ+ g
2

(
1

c2
ph

ω2 + q2)bT bT −bτJV
τ −bT JV

T . (2.53)
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We see that the vortex sources emit gauge fields with propagators,

〈〈bτ(p)bτ(0)〉〉 = 1
gq2 , (2.54)

〈〈bT (p)bT (0)〉〉 = 1
g( 1

c2
ph
ω2 + q2)

= 1
gp2 . (2.55)

We recover the static long-range Coulomb force with a 1
|r| -potential, and the

single, transversely polarized massless propagating photon of 2+1d EM, re-
spectively. The static ‘photon’ reflects the well known fact that static vortices
in 2D interact via a Coulomb potential, and the transversal photon is just
zero sound while in the dual ‘force’ language it becomes explicit that this
Goldstone boson can propagate forces between sources and sinks of super-
current. We stress again that this correspondence between the ‘XY universe’
and 2+1d EM with scalar matter is quite accidental for the 2+1d case.

2.4.4 Vortex proliferation

The description above is suitable for one or several remote vortices in the
superfluid that have long-range interactions. Upon increasing the coupling
constant g, the phase fluctuations in Eq. (2.40) increase, which implies also
that the spontaneous creation and annihilation of vortex–anti-vortex pairs
becomes more frequent. These pairs are also longer-lived. The best descrip-
tion is in terms of spacetime loops of the world lines of vortex–anti-vortex
pairs. The coupling constant is then as the inverse line tension, and an in-
creasing coupling constant allows the loops to become larger and larger. At
the critical point gc the loops will have grown of the system size, and vortex
lines permeating the system can freely form and disappear. This is char-
acteristic for a condensate of particles, just as Cooper pairs can be freely
extracted from the superconducting vacuum. Thus, such a “tangle of vortex
world lines” is indeed equivalent to a “condensate of vortices”.

This statement can be made very precise, and is in fact the central topic
of Kleinert’s textbooks [28, 42]. It is easiest to go to the lattice, and calculate
the energy cost of meandering vortex world lines as chains of lattice links.
We will not repeat this treatment here, but only cite the result, which is also
established in [31, 40]. From the dual perspective it is immediately clear
what will happen: the vortex condensate forms a medium (liquid) to which
the dual gauge fields are minimally coupled. This just follows Ginzburg–
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Landau theory of §2.1. This collective vortex condensate field is represented
by a complex (dis)order parameter Φ = |Φ|eiφ, the amplitude of which corre-
sponds to the density of the vortex fluid. The disorder parameter is related
to the vortex current as,

JV
λ = iΦ̄∂λΦ− i(∂λΦ̄)Φ. (2.56)

The minimal coupling to the dual gauge field ∼ bλJV
λ

is now reflected by
the new Lagrangian,

L = 1
2

g(εµνλ∂
ph
ν bλ)2 + 1

2
|(∂ph

λ
− ibλ)Φ|2 + ã

2
|Φ|2 + β̃

4
|Φ|4. (2.57)

Here we have added Ginzburg–Landau potential terms. The dual gauge
field bκ clearly acts just as the electromagnetic field would in a superconduc-
tor. Thus, when α̃< 0, the disorder parameter obtains a vacuum expectation
value |Φ| =

√ |α̃|
β̃

≡Φ∞. Only the phase φ remains as a degree of freedom, it
represents the density fluctuations of the vortex condensate, i.e. the com-
pression mode of the vortex liquid.

2.4.5 Mode content of the vortex condensate

How to count the modes of the dual superconductor? It is just the usual
business for the Anderson–Higgs mechanism. Choose coordinates (∥,⊥,T)
with ∥ parallel to the spacetime momentum pµ, and ⊥ perpendicular to both
∥ and T (Fig. 1.3). In this system the momentum becomes pµ = (p,0,0). We
see that the condensate phase φ couples only to the parallel direction,

L = 1
2

g(εµνλ∂
ph
ν bλ)2 + 1

2
|(∂ph

λ
− ibλ)Φ|2

→ 1
2

(p2 +Φ2
∞)(b2

⊥+b2
T )+ 1

2
Φ2

∞(pφ−b∥)2. (2.58)

This action is invariant under the combined gauge transformations b∥ →
b∥+ pε and φ→ φ+ε. One possible gauge fix is the unitary gauge φ ≡ 0 and
in this way one shuffles the condensate mode into the “longitudinal photon”
b∥, which then becomes a true physical degree of freedom. This is sometimes
referred to as the gauge field “eating the Goldstone boson”. Alternatively,
we can choose the Lorenz gauge pb∥ ≡ 0, in which this degree of freedom is
indeed seen to originate in the condensate field φ. The field b⊥ corresponds
to the now short-ranged Coulomb force, and AT and A∥ form a degenerate
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superfluid Mott insulator

Coulomb vacuum superconductor

duality phase transition

real side

dual side

coupling constant

dual coupling constant

Figure 2.4: Overview of duality relations. The vertical correspondence is the duality;
the horizontal is the phase transition. The dual side is in terms of the interactions
between vortices: individual sources interacting via the Coulomb law; or as a su-
perconducting condensate that effects a Higgs mechanism for the dual gauge fields.
When the real coupling constant is small (the superfluid), the dual coupling constant,
which is the string tension of the vortex world lines, is large and vice versa.

pair of massive propagating modes. This matches precisely the expectations
that follow from the Bose-Hubbard model; in the superfluid/Coulomb phase
a single massless propagating mode is present corresponding with the phase
mode/photon. In the dual superconductor one finds a pair of massive propa-
gating modes corresponding with the Higgsed transversal and longitudinal
photons: these correspond with the holon and doublon excitations of the
Bose-Mott insulator while the Higgs mass of the dual superconductor just
codes for the Mott gap. The fate of the second mode when going to the super-
fluid phase was discussed in Ref. [59].

This is a good point to reflect on the correspondences in the vortex dual-
ity, see figure 2.4. The superfluid is dual to the Coulomb vacuum where the
vortices take the role of the monopole charges, and the dual gauge fields are
like photons. The phase transition is from the superfluid to the Bose-Mott
insulator which has two gapped modes. On the dual side this is the supercon-
ductor with two massive dual photons. In duality parlance, it is sometimes
said that the superfluid is dual to a superconductor; strictly speaking this is
incorrect, but the since the strength of the dualities is in phase transitions,
one often compares the weak-coupling phases of the dual sides.

In the next chapter we shall explore how this generalizes to higher di-
mensions. It turns out that not the dual gauge field but rather the supercur-
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rent itself is the quantity containing the important information.

2.4.6 Duality squared equals unity

Just to complete the duality exercise, we can ask the question whether there
can also be the analogues of Abrikosov vortices in the dual superconductor?
This is indeed the case, and it goes in exactly the same way as above. First,
introduce an auxiliary field vµ, such that,

L = 1
2

g(εµνλ∂
ph
ν bλ)2 + 1

2
Φ2

∞(∂ph
λ
φ−bλ)2, (2.59)

turns into,
L = 1

2
g(εµνλ∂

ph
ν bλ)2 − 1

2Φ2∞
v2
µ−vµ(∂ph

µ φ−bµ). (2.60)

If there are dual vortices, we should split the dual phase field into a smooth
and a multivalued part, φ=φsmooth+φMV. The smooth part can be integrated
out as a Lagrange multiplier for the constraint ∂ph

µ vµ = 0. This constraint can
be enforced explicitly by introducing yet another gauge field vµ = εµνλ∂

ph
ν zλ.

The Lagrangian now reads,

L = 1
2

gw2
µ−

1
2Φ2∞

(εµνλ∂
ph
ν zλ)2 + zλJ V

λ + zλwλ. (2.61)

Here J V
λ

= ελνµ∂
ph
ν ∂

ph
µ φMV is the vortex current, and we have resubstituted

wµ = εµνλ∂
ph
ν bλ; the last term indicates how the original supercurrent cou-

ples to the z-degrees of freedom. It is at this point possible to integrate out
the supercurrents wµ, to leave a Meissner/Higgs term for the gauge fields
1

2g z2
λ
. This indicates that the interactions between vortices J V

λ
are Meissner

screened, as it should be in a (dual) superconductor.
Instead, suppose that the vortices proliferate, then they form a conden-

sate with order parameter Ψ, with its own Ginzburg–Landau potential,

L =− 1
2g

z2
λ−

1
2Φ2∞

(εµνλ∂
ph
ν zλ)2 − 1

2
|(∂λ− izλ)Ψ|2−1

2
α|Ψ|2 − 1

4
β|Ψ|4. (2.62)

We can now rescale the gauge field zλ→Φ∞zλ, to leave,

L =−Φ
2∞

2g
z2
λ−

1
2

(εµνλ∂
ph
ν zλ)2 − 1

2
|(∂λ− iΦ∞zλ)Ψ|2−1

2
α|Ψ|2 − 1

4
β|Ψ|4. (2.63)

The vortex condensate will destroy the dual order, with the effect that the
dual superfluid density Φ∞ → 0. In the above Lagrangian the order parame-
ter Ψ then decouples from the dual gauge field, and we end up with just the
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Landau action for a superfluid,

L =−1
2
|∂λΨ|2−1

2
α|Ψ|2 − 1

4
β|Ψ|4. (2.64)

Concluding, the phase transition from the dual superconductor to its disor-
dered phase is again the superfluid with which we started out. Thus indeed
“duality2 = 1”.

Note that we have seen above that vortices can form in the dual super-
conductor, so there are vortices in the Bose-Mott insulator. This is a bit
surprising result, that has been overlooked for quite a while. It will be a
topic of interest in chapter 3 and moreover 5.

2.4.7 Charged vortex duality

For charged superfluids, i.e. superconductors, one can do the same calcu-
lation, without many changes. The starting point is the Ginzburg–Landau
action Eq. (2.34), which in dimensionless units reads,

SE =
∫

dτdD x − 1
2g

(∂ph
µ ϕ− Aph

µ )2 − 1
4µ

F2
µν. (2.65)

Here 1/µ = ħaD−3

µ0 cph e∗2 . The chargeless supercurrent is defined as the canonical
momentum,

wµ =− ∂L

∂(∂ph
µ ϕ)

= 1
g

(∂ph
µ ϕ− Aµ), (2.66)

and is related in dimensionful units to the familiar charged supercurrent
as Js

µ = e∗
ħ wµ. Separating the multivalued part of the phase field, integrat-

ing out the smooth part, and enforcing the conservation of supercurrent by
introducing the dual gauge fields leads to the equivalent of Eq. (2.51),

Ldual =
1
2

g(εµνλ∂
ph
ν bλ)2 −bλJV

λ + Aµεµνλ∂
ph
ν bλ− 1

4µ
F2
µν. (2.67)

Here we see that the photon field simply couples to the supercurrent wµ =
εµνλ∂

ph
ν bλ as it should. One could integrate out the dual gauge field to find

an interaction between the vortex currents JV
λ

that is Meissner screened due
to the electromagnetic field. But instead we proceed with the duality, where
basically we just keep around the last two terms in the above expression.
Thus, after proliferation of the vortices we have,

L = 1
2

g(εµνλ∂
ph
ν bλ)2 + 1

2
Φ2

∞(∂ph
λ
φ−bλ)2 + Aµεµνλ∂

ph
ν bλ− 1

4µ
F2
µν. (2.68)
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Here we have assumed the dual London limit |Φ| = Φ∞ everywhere. One
could again integrate out the dual gauge field to find the electromagnetic
response for the Mott insulator. We will see in §5.A.4 that we indeed find
gapped poles for the conductivity instead of the delta-function response of
the superconductor.
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Chapter 3

Vortex duality in 3+1 dimensions

The vortex–boson or Abelian-Higgs duality as pertaining to many-body phy-
sics in 2+1 dimensions is by now well established and has been researched
for over three decades [27–33, 35, 36]. One can wonder why this has almost
exclusively been restricted to planar physics, while many systems of inter-
est are in fact three-dimensional. The reason is quite simple: vortices in
two dimensions are pointlike and trace out world lines, whereas in three di-
mensions they are linelike and trace out world sheets in spacetime. As such
the dual objects are more complicated as they have more internal degrees
of freedom. Although a single vortex world sheet is still quite tractable, for
a rigorous description of a condensate of such extended objects, a “string
foam”, one needs string field theory [38, 39], which is as of yet still in early
stages of development.

Surely, several authors have made progress on the condensation of vortex
world sheets, in the context of string theory [47, 48] and condensed matter
theory [46]. However in this chapter we shall discover that the proposed
methods do not apply for the case at hand, the quantum phase transitions
in 3+1 dimensional condensed matter. The reason is that they do not yield
the proper mode content for the disordered phase (the Bose-Mott insulator)
as they ascribe too many degrees of freedom to the vortex condensate as
a compressible liquid. In part this can be explained by the fact that the
vortices in condensed matter are so-called Nielsen–Olesen strings [60] which
have a finite core size and core energy and no internal conformal symmetry.
This is different from fundamental or ‘critical’ strings1. Nevertheless one

1I thank Dr Soo-Jong Rey for pointing this out.

41



encounters the difficulty that second quantization cannot be formulated for
stringy matter. Accordingly, different from matter formed out of particles,
an algorithm is lacking to compute the properties of such string condensates
directly. The only example of a precise duality involving stringy topological
excitations is the transversal field global Ising model in 2+1d [3]. The strong
coupling phase can be viewed as Bose condensate of Ising domain walls in
space time [61]; remarkably, the Wegner duality [4] demonstrates that this
string condensate is actually the ordered (deconfining) phase of Ising gauge
theory, while the ordered Ising phase corresponds with the confining phase
of the gauged theory.

In this chapter we develop the effective theory governing the condensa-
tion of vortex world sheets in superfluids. In the ordered phase the vor-
tices interact by exchanging 2-form gauge fields instead of 1-form or vector
fields. We will show that these 2-form gauge fields undergo a Higgs mecha-
nism in the disordered phase much like regular vector fields do. Guided by
the knowledge that the disordered superfluid must correspond to the Bose-
Mott insulator and its two gapped doublon and holon excitations, we argue
that the string foam should add only a single degree of freedom, contrary
to earlier claims. As a result, not the gauge fields but rather the physi-
cal supercurrents are to be regarded the fundamental quantities, and the
phase transition is in this context at that point where supercurrents are no
longer conserved. The results are generalizable to any dimension higher
than two. Systems more complicated than the superfluid should undergo a
similar mechanism, for instance the superconductor that will be investigated
in chapter 5.

We include a discussion about vortices in the disordered phase, and two
appendices on the counting of degrees of freedom and the application of this
current formalism to Maxwell electromagnetism.

3.1 Dualization of the phase mode

Let us start right away by repeating as much as possible the exercise of
dualizing the superfluid phase mode. The starting point is again Eq. (2.40).

Z =
∫

Dϕ e−
∫

L =
∫

Dϕ e−
∫ − 1

2g (∂ph
µ ϕ)2 . (3.1)

Introduce auxiliary variables, the canonical momentum or the supercur-
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rent,

wµ =− ∂L

∂(∂ph
µ ϕ)

= 1
g
∂

ph
µ ϕ. (3.2)

The partition sum after a Hubbard–Stratonovich transformation is now,

Zdual =
∫

DϕDwµ e−
∫ 1

2 gwµwµ−wµ∂
ph
µ ϕ. (3.3)

We split the phase field into smooth (phase mode) and multivalued (vortices)
parts, ϕ=ϕsmooth +ϕMV. In 3+1 dimensions, the contour integral around the
multivalued part will still yield the winding number N times 2π, but the
vortices are now linelike, because otherwise we could close the contour by
pulling it ‘over’ the point, see §2.2. The smooth part can be integrated out
as a Lagrange multiplier for the constraint ∂

ph
µ wµ = 0, the conservation of

supercurrent.

3.1.1 2-form gauge fields

Now comes the first deviation from the treatment in 2+1 dimensions. The
constraint can be explicitly enforced by expressing the supercurrent as the
curl of a gauge field, but since in four dimensions the Levi-Civita symbol has
four indices, the gauge field is an antisymmetric 2-form field,

wµ = εµνκλ∂ph
ν bκλ. (3.4)

There are six independent components in bκλ. This expression is invariant
under the addition of the gradient of any smooth vector field ελ(x),

bκλ(x)→ bκλ(x)+∂κελ(x)−∂λεκ(x). (3.5)

The addition of the gradient of any smooth scalar field ελ(x) → ελ(x)+∂λη(x)
will lead to the exact same gauge transformation for bκλ, so there is a re-
dundancy in the gauge redundancy itself. This is sometimes referred to as
“gauge in the gauge”, and is of importance in the counting of degrees of free-
dom as described in the appendix 3.A. The result is that a free massless
2-form field has one propagating degree of freedom, which we already know
since we derived it from the superfluid phase mode. Substituting the gauge
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field in the generating functional we find,

Zdual =
∫

DϕMVDbκλF (bκλ) e−
∫

Ldual (3.6)

Ldual =
1
2

g(εµνκλ∂
ph
ν bκλ)2 −εµνκλ∂ph

ν bκλ∂
ph
µ ϕMV

= 1
2

g(εµνκλ∂
ph
ν bκλ)2 −bκλJV

κλ. (3.7)

Here F (bκλ) is a suitable gauge-fixing factor, and in the last step we defined
the vortex current,

JV
κλ(x)= εκλµν∂ph

µ ∂
ph
ν ϕMV(x). (3.8)

The interpretation of Eq. (3.7) is the following: in the superfluid there are
vortex lines which trace out world sheets, built up out of surface elements
JV
κλ

, spanned by two non-parallel directions κ and λ. These vortices are
sources in the sense of Schwinger [62], and therefore interact by exchanging
two-form gauge fields bκλ. This gauge field corresponds to the zero sound
or Goldstone boson of the superfluid. The first term is the kinetic energy
or dynamics of the gauge field. Just as before, because of the long-range
interactions, we call this the Coulomb phase for the vortices.

3.1.2 Mode content of the Coulomb phase

To examine the mode content explicitly, it is useful to go to the (τ,L,θ,φ)
coordinate system, in which L is the spatial-longitudinal direction, and θ,φ
are two arbitrarily chosen orthogonal transversal directions (see Fig. 1.3).
We can use the gauge freedom Eq. (3.5) to impose the generalized Coulomb
gauge ∂kbkλ = qbLλ = 0, which removes all longitudinal components. The
Lagrangian can now be expanded in the remaining components to find,

L = 1
2

gq2b2
τθ+

1
2

gq2b2
τφ+

1
2

g(ω2 + q2)b2
θφ. (3.9)

Here we clearly identify the purely transversal component bθφ as the sin-
gle propagating mode. This makes sense as in 2+1 dimensions it was the
transversal polarization of the dual gauge field, bT , that represented the
Goldstone mode. Furthermore there are now two temporal components bτθ
and bτφ that communicate static Coulomb interactions between two vortex
lines. The number of Coulomb forces increases because of the higher dimen-
sionality of space: the relative orientation of vortex line sources allows for
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more diverse interactions. Except for this little surprise, we observe that the
Coulomb phase of this stringy 2-form gauge theory is coding precisely for the
physics of the 3+1d superfluid with its single propagating mode.

3.2 Vortex proliferation

Now it is time to try and increase the coupling constant g, let the vortex
world sheets grow to the system size and let the vortices proliferate to effect
the phase transition. We anticipate a kind of ‘string foam’ as the analogue of
the ‘tangle of vortex world lines’. As mentioned, there is presently no ‘second
quantized’ way to do this, and all we can hope to achieve is an effective theory
that captures the collective behaviour of the vortex liquid. The problem is
to find a (dis)order parameter to which the dual 2-form gauge fields couple
minimally. This was attempted in earlier works [46–48], and we now shall
review their approach (a different path with some ideas similar to ours was
taken in Refs. [49, 63]).

3.2.1 Naive generalization of the vortex proliferation

The defect world sheet is parametrized by σ = (σ1,σ2) and X (σ) is the map
from the world sheet to real space. Hence each point on the world sheet σ is
mapped to a specific point in real space X (σ). A surface element of the world
sheet is given by,

Σκλ
[
X (σ)

]= ∂Xκ

∂σ1

∂Xλ

∂σ2
− ∂Xλ

∂σ1

∂Xκ

∂σ2
. (3.10)

The dynamics of the world sheet is given by the Nambu–Goto action,

Sworldsheet =
∫

d2σ T
√
ΣµνΣµν, (3.11)

where the integral is over the entire world sheet and T is the string tension,
comparable to our 1/g.

The source term Jκλ = εκλµν∂µ∂νϕMV is related to the world sheet by,

Jκλ(x)∼
∫

d2σ Σκλ
[
X (σ)

]
δ(X (σ)− x). (3.12)

According to figure 2.2(b), the gauge field bκλ(x) couples to the world sheet
surface element Σκλ

[
X (σ)

]
. Suppose that a condensate of these vortex strings
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has formed, giving rise to a collective variable Φ
[
X (σ)

]
which is now a func-

tional of the coordinate function X (σ). The fluctuations of the condensate are
given by the functional derivative,

∂µΦ→ δ

δΣκλ
[
X (σ)

]Φ[
X (σ)

]
. (3.13)

When a condensate has formed, the amplitude |Φ| acquires a vacuum ex-
pectation value. The amplitude fluctuations freeze out as in the particle
condensate and only the phase of the string condensate field is left as a dy-
namical variable. The phase fluctuations enumerate the collective motions
of the string condensate but in the absence of an automatic formalism it is
guess work to find out what these are. Marshall & Ramond, Rey and Franz
[46–48] find inspiration in the analogy with the particle condensate. The
phase degrees of freedom have to be matched through the covariant deriva-
tive with the 2-form gauge fields and they conjecture the seemingly obvious
generalization,

Φ
[
X (σ)

]= |Φ|ei
∫

dXµ(σ)Cµ[X (σ)], (3.14)

which implies that the collective motions of the string condensate are para-
metrized in a vector valued phase. The functional derivative (3.13) yields,

δ

δΣκλ
Φ

[
X (σ)

]= |Φ|(∂κCλ−∂λCκ), (3.15)

reducing in turn to a natural minimal coupling form,

| δ

δΣκλ
Φ|→ |( δ

δΣκλ
− ibκλ)Φ| = |Φ|(∂κCλ−∂λCκ−bκλ), (3.16)

being gauge invariant under the combined transformations,

bκλ→ bκλ+∂κελ−∂λεκ, (3.17)

Cκ→ Cκ+εκ. (3.18)

While this conjecture seems elegant and natural it is actually wrong, at
least for the string field theory as of relevance to the 3+1d vortex string
condensate. The flaw is in the overcounting of the degrees of freedom of
the Mott-insulator/dual superconductor: the vector phase field ascribes too
many collective degrees of freedom to the string condensate. Relying on the
gauge invariance in the previous paragraph, we choose the unitary gauge
Cκ ≡ 0 (cf. (2.58)). The action then reduces to that of a massive 2-form, which
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is known to have three propagating degrees of freedom. These can be identi-
fied by noting that we have ‘spent’ all gauge freedom in this gauge fix, such
that all components of bκλ become physical degrees of freedom. The three
components bτλ are Coulomb forces, the other three are propagating. But we
know that we should end up with two propagating degrees of freedom from
the correspondence to the Bose-Mott insulator of section 2.3. Another view
on this is that without interactions, this vortex condensate carries the two
propagating degrees of freedom of a free massless vector field Cκ in four di-
mensions (just like a photon). In the unitary gauge these two get transferred
to the gauge field b∥κ, just as the φ-degree of freedom was transferred to b∥
in (2.58). So if the vortex condensate were described by (3.14), it would carry
two degrees of freedom, instead of only a single pressure mode.

The fallacy of this guess becomes even more obvious extending matters to
higher dimensions. Generalizing this minimal coupling guess to d spacetime
dimensions,

|∂µφ−bµ|→ |∂[µφν1···νd−3] −bµν1···νd−3 |, (3.19)

One easy way is to count the number of propagating degrees of freedom of
the phase field φν1···νd−3 if it were not coupled to the gauge field bµν1···νd−3 . All
of these modes transfer to the gauge field via the Higgs mechanism, adding
their degrees of freedom to the single spin-wave mode. The number of propa-
gating modes for an antisymmetric form field is given by all possible spatial-
transversal polarizations [cf. (3.9)]. In d spacetime dimensions there are d−2
transversal directions, which must be accommodated in the d−3 indices of
the phase field φ. Therefore, the number of degrees of freedom is(

d−2
d−3

)
= (d−2)!

(1)!(d−3)!
= d−2, d ≥ 3. (3.20)

This must be added to the single spin-wave mode, so in d spacetime dimen-
sions, the naive prescription (3.19) would yield d−1 massive degrees of free-
dom, overcounting the modes of the Mott insulator by d−3. In this regard,
d=2+1 is quite special indeed!

The fact that the usual minimal coupling procedure for the Higgs phe-
nomenon is failing so badly in the higher dimensional cases indicates that it
is subtly flawed in a way that does not become obvious in the 2+1d duality
case, or even the 3+1d electromagnetic Higgs condensate. What is then the
correct description of the string condensate? It surely has to correspond to

3.2 Vortex proliferation 47



the Bose-Mott insulator, which implies that the string condensate can only
add one additional mode. One way to establish its nature is by invoking a
general physics principle: the neutral string condensate would surely rep-
resent some form of compressible quantum liquid—which is not necessarily
the case for fundamental strings—and such an entity has to carry pressure
and thereby a zero sound mode. There is just no room for anything else given
the mode counting that we know from the Bose-Mott insulator and we can
already conclude that a Nielsen–Olesen string superfluid is at macroscopic
distances indistinguishable from a particle superfluid!

3.2.2 Fate of the supercurrent

We need a different approach to guide us through the phase transition. Re-
member that in the duality transformation, we started out with regarding
the supercurrent as the central object instead of the phase mode. The su-
percurrent is conserved in the superfluid ∂

ph
µ wµ = 0, which was the reason we

could express it in terms of a dual gauge field wµ = εµνκλ∂
ph
ν bκλ. There is a

one-to-one correspondence between the components of the supercurrent and
of the gauge field when expressed in the (∥,⊥,θ,φ) coordinate system,

w⊥ ↔ bθφ wθ ↔ b⊥φ wφ↔ b⊥θ. (3.21)

In the superfluid the conservation of supercurrent eliminates w∥ as a degree
of freedom, and for the gauge fields we can remove b∥λ ∀λ by a suitable
gauge transformation ∂

ph
κ bκλ = 0. This choice, called the (generalized) Lorenz

gauge, is very natural as these components are not sourced by the vortex
current, as it is also conserved ∂

ph
κ JV

κλ
= 0.

But in the dual superconductor we have seen that there is an additional
degree of freedom due to the vortex condensate. How is this reflected by the
supercurrent?

The Helmholtz theorem, familiar from vector analysis in electrodynam-
ics, states that a sufficiently smooth vector field can always be separated
into a irrotational (curl-free) and a solenoidal (divergence-free) part. This
theorem can be generalized to dimensions other than three [64]. Thus we
can split any vector field, in particular the supercurrent, into,

wµ = ∂ph
µ χ+εµνκλ∂ph

ν bκλ. (3.22)

48 Chapter 3. Vortex duality in 3+1 dimensions



It it easy to see that the curl of the first term and the divergence of the second
term both vanish. Now in the superfluid the current is conserved, ∂ph

µ wµ =
0, which imposes a constraint on the irrotational part, namely (∂ph)2χ = 0.
Clearly this irrotational part, corresponding to w∥, is removed as a dynamic
degree of freedom in the superfluid. But what is the situation for the vortex
condensate?

Recall that the formation of a vortex line induces supercurrent to flow
around it. In other words, a vortex is a source of supercurrent. In the vortex
condensate vortices and anti-vortices can form and disappear freely, and as
they are sources and sinks of supercurrent, the latter is no longer conserved
anywhere. This is equivalent to the statement that there are now only short-
range correlations of the supercurrent due to the Higgs mechanism, and the
local conservation law no longer holds. The constraint ∂ph

µ wµ = 0 is removed,
and in view of the above this also implies the release of the irrotational, lon-
gitudinal component as an additional degree of freedom. The compressional
mode of the vortex condensate is reflected by the longitudinal component of
the superfluid.

3.2.3 Supercurrent Higgs action

For another viewpoint, let us step back to the 2+1 dimensional case. Using
the definition wµ = εµνλ∂

ph
ν bλ and by integrating out the phase field φ, Eq.

(2.58) can be formally rewritten as,

L = 1
2

gwµwµ+ 1
2
Φ2

∞wµ
1

−∂2 wµ. (3.23)

Here the first term is just the kinetic energy of the supercurrent as in Eq.
(2.41), and the second is the Meissner term indicative of the now short-range
interactions, and it is sometimes referred to as the “gauge-invariant Higgs
term”. But since this is the Higgs phase, there must also be the additional
degree of freedom coming from the vortex condensate compressibility. We
now know that this role is taken up by the longitudinal component of the
supercurrent.

This expression is true for any dimensionality! And we have already pro-
vided the interpretation, the components of the supercurrent are classified
as follows: the component w⊥ corresponds to the purely transversal compo-
nent of the gauge field and represent the superfluid zero sound or Goldstone
mode; the transversal components wTi correspond to temporal components

3.2 Vortex proliferation 49



of the gauge fields, and therefore represent the static Coulomb forces; and
the longitudinal component w∥ couples to the vortex condensate, and is a
dynamical degree of freedom only in the Higgs phase.

In light of these considerations, it is almost always best to choose the
Lorenz gauge fix. Then using Eq. (3.22), the Higgs Lagrangian in 3+1 di-
mensions Eq. (3.23) reads,

L = 1
2

(gp2 +Φ2
∞)(χ2 +b2

⊥θ+b2
⊥φ+b2

θφ). (3.24)

Here the first two terms are the degenerate doublet of propagating modes,
whereas the last two are the static Coulomb forces—their static nature with
propagator ∼ q2 is seen only explicitly in the Coulomb gauge. All terms ac-
quire a Higgs mass and therefore represent short-range interactions.

3.2.4 Summary of the results

The take-home message of this section is as follows. The conventional way
of deriving the duality has a ‘materialistic’ attitude, invoking the vortices as
a form of matter while the gauge fields enter much in the way as fundamen-
tal gauge fields code for the way that matter interacts. As we discussed, it
is however also possible to reformulate the duality in terms of the physical
currents, focussing on the way their continuity is lost—in phase representa-
tion this turns into the emergent gauge invariance of the Mott insulator. In
the next section we will show that the ingredients of the vortex duality in
the gauge language are strongly dependent on the dimensionality of space-
time, actually posing some problem of principle associated with the nature
of string field theory.

However, when formulated in terms of the gauge invariant currents the
dependence on dimensionality disappears, just as in the canonical Bose-
Hubbard language of section 2.3. It leads to the correct mode counting as
detailed in table 3.1. The ‘current language’ is still closely tied to the vortex
language and this gives us the hold to control the duality in higher dimen-
sions. The explicit statement is:

The neutral superfluid–charged superconductor duality of the 2+1d global
U(1) theory is equally valid in D+1 dimensional systems with D > 2, where the
dual superconductor describes a D−1 form gauge theory Higgsed by a p = D−2
Nielsen–Olesen brane condensate that supports one massive compressional
mode.
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Coulomb phase Higgs phase

Coul. forces propagating Coul. forces propagating

2+1d 1 long-range 1 massless 1 short-range 2 massive
3+1d 2 long-range 1 massless 2 short-range 2 massive

Table 3.1: Mode counting in the XY -model. Vortex proliferation in terms of the
demise of supercurrents leads to the correct mode counting. Furthermore it con-
tains as well the static Coulomb forces, which increase with the dimensionality of
the system.

The derivation goes as follows. For each broken symmetry generator,
there is a Goldstone mode that communicates the rigidity of that order pa-
rameter. The set of Goldstone modes {ϕa} is labelled by an index a. Be-
cause these modes are massless and non-interacting, the canonical momenta
wa
µ = ∂L

∂(∂µϕa) are conserved ∂µwa
µ = 0. They are in fact the Noether currents

under the global symmetry transformations ϕa(x) → ϕa(x)+αa. As current
carries energy, the action is of the form S ∼ ∫

wa
µwa

µ. Topological defects are
regions where the Goldstone variable is not well-defined; consequently, the
current is no longer conserved in that region. Each flavour a of current wa

µ

can be generated by the appropriate topological defect. A condensate of such
defects Φa will have two effects:

i) they generate current everywhere, so that the current is conserved
nowhere ∂µwa

µ 6= 0 which introduces a new degree of freedom;

ii) the current–current correlations are destroyed by the defects, causing
them to be exponentially decay with scale set by the Higgs mass Φa∞.

The action in the Higgs phase is of the form,

S ∼
∫

wa
µ

(
1+ (Φa∞)2

−∂2

)
wa
µ. (3.25)

3.3 Minimal coupling to 2-form gauge fields

The Lagrangian Eq. (3.23) contains all the dynamical information, and is
valid for any dimension. Still, since the gauge fields are interpreted as the
force carriers of the interaction between vortices, it would be nice if there
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were a description in terms of the gauge fields as well. In other words, we
want a minimal coupling description that supersedes Eq. (3.16), and that
incorporates the 2-form gauge fields while still leading to the correct mode
content. The central problem is how to match the 1-form gradient of the
phase field ∂µφ to the 2-form gauge field bκλ.

We shall here present two proposals that accomplish this task. The first
is valid in any dimension, but in fact leads to a slightly different definition
of the gauge field, which in turn has an effect on the vortices of the dis-
ordered phase. The second avoids this last complication, but is as of yet
only valid in 3+1 dimensions, and has no obvious way in which the “duality
squared”-procedure of §2.4.6 follows. Let us first describe the two proposals,
and address these issues when they present themselves.

3.3.1 Orthogonal projection

Since we know that the Lagrangian in gauge field components Eq. (3.24) is
correct, we would be satisfied with any minimal coupling form that results
in this expression. Now this Lagrangian is explicitly gauge fixed by ∂

ph
κ bκλ

to project out the longitudinal components. We can also collect these three
components in vector form by contracting with the Levi-Civita symbol where
one of the indices is fixed to be this longitudinal direction. Consequently, we
propose the minimal coupling to be,

∂
ph
µ φ−εµ∥κλbκλ. (3.26)

The second term is non-zero only when µ,κ and λ take values in (⊥,θ,φ) exclu-
sively. Now since the derivative operator has only a longitudinal component,
any crossterms automatically vanish, and indeed we find,

|Φ|2(∂ph
µ φ−εµ∥κλbκλ)2 = |Φ|2(

(∂µφ)2 +b2
θφ+b2

⊥θ+b2
⊥φ

)
. (3.27)

Several remarks are in order. Firstly, this minimal coupling does not seem to
be explicitly gauge fixed, as the gauge-variant components are projected out.
However after taking the square as above, one cannot help to think that the
Lorenz gauge fix is still in place. This should not concern us too much: we
can contend ourselves with this gauge-fixed form, knowing that the ultimate
truth is represent by the “gauge-invariant Higgs action” Eq. (3.23) anyway.

Secondly and more importantly, the gauge fields bκλ in this expression
are not precisely the same as those we used before in e.g. Eq. (3.22). This
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becomes clear when we step back to 2+1 dimensions. The analogue of Eq.
(3.26) is,

∂µφ−εµ∥λbλ, (3.28)

which is clearly different from the standard minimal coupling Eq. (2.57). In
fact, the directions in the transversal directions have been shuffled by the
Levi-Civita symbol. This is the reason why I refer to this minimal coupling
as “orthogonal projection”. In 2+1 dimensions the relationship between the
two forms for the gauge fields is clear, but in higher dimensions there is no
immediate way of doing this. This does not seem to matter much now as the
gauge fields are secondary variables anyway, but it has in fact bearing on
the definition of the dual vortices as we will see in the next section.

Finally, this prescription can be generalized to any dimension d ≥ 2+1,

∂µφ−εµ∥λ1···λd−2 bλ1···λd−2 . (3.29)

The only surviving components of the gauge field are the single superfluid
phase mode with only spatial-transversal components, and the Coulomb
forces which have one index with temporal direction ⊥.

3.3.2 Sum over vortex world sheet components

There is another form of the minimal coupling that results in Eq. (3.24),
namely,

1
2

∑
α

δκα∂
ph
λ
φ−bκλ. (3.30)

Indeed,

|(1
2

∑
α

δκα∂
ph
λ

−bκλ)Φ|2 = |Φ|2(1
4

(
∑
α

δκα
∑
β

δκβ)(∂ph
λ
φ)2 −∑

α

δκα(∂λφ)bκλ+bκλ2)
= |Φ|2(

(∂ph
λ
φ)2 +bκλ2)

. (3.31)

In the last line we have imposed the Lorenz gauge so that the crossterms
vanish. The expression Eq. (3.30) looks rather awkward. Nevertheless there
is a concrete physical example where the minimal coupling has to be of this
form, namely the vortices in a disordered superconductor. There the sum-
mation causes all κ-components of the dual vortex current J V

κµ to contribute
to the current wµ. This will be argued extensively in chapter 5.

Again, one could be satisfied by the correct outcome for the Lagrangian
in gauge field components, always able to fall back on Eq. (3.23) when doubt
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arises. The specialization back to 2+1 dimensions is straightforward, by just
leaving out the κ-components, avoiding the summation altogether. However
it is not clear how to generalize to dimensions higher than four, but that is
of no practical concern. Finally, these gauge fields bκλ here are the same
as used throughout this chapter, contrary to the previous construction Eq.
(3.26).

3.3.3 Discussion

Exactly because the demise of the supercurrent is the defining feature of the
dual Higgs condensate, there is no automatic way to derive the expression in
terms of the dual gauge field. What is clear is that all of the gauge-invariant
components (namely bθφ, b⊥θ and b⊥φ) should be included and gain a Higgs
mass. We are free to rotate between these components, or redefine them as
we see fit. Therefore, even though the expressions Eqs. (3.26) and (3.30)
look very different, we know they contain the same physics as far as the
Lagrangian is concerned.

It may even be possible to define an explicit mapping between the two
formulations, which would clear up the confusion that is presented here. As
of yet I have not been able to find such a mapping. In the next section we
will see that naively proceeding from these formulation leads to two very
different interpretations of the dual vortex currents. Perhaps it is wisest to
accept both forms just as different models, to be called upon in the suitable
physical situation.

3.4 Vortices in the disordered phase

One of the appealing features of the vortex duality is that we have com-
plete control over the disordered side. Indeed, in dual language it is just a
Ginzburg–Landau theory of its own, with disorder parameter Φ, condensate
phase fluctuations φ and coupling to a gauge field bκλ. The disordered phase
is just a superconductor, albeit in 3+1 dimensions one with 2-form gauge
fields.

This raises the immediate question of whether there are also dual topo-
logical defects (dual Abrikosov vortices) in the disordered phase. Since we
have at hand just the theory of a (dual) superconductor, the answer is: of
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course there are. We already alluded to this in §2.4.6. But remembering
that the disordered state is in fact the Bose-Mott insulator the appearance
of such vortices is actually quite surprising. The Bose-Mott insulator is gen-
erally regarded as an exceedingly boring state of matter, where all particles
are localized, everything is gapped, and there are only the two propagat-
ing doublon and holon modes. Even the dynamic spin system active in the
fermionic Mott insulator is absent here.

Apparently, the state is richer and does allow for vortex excitations. For
clarity I shall refer to these as Mott vortices for now on. The reason that they
have not been suggested before is that usually one considers the so-called
atomic or strong-coupling limit U /t À 1. But just as for superconductors,
things become more interesting when the condensate is not so strong. Recall
that Abrikosov vortices can appear when the penetration depth λ exceeds
the coherence length, and the penetration depth is inversely proportional to
the superfluid density λ2 ∼ 1/|Ψ|2, see §2.1.2. Similarly, we expect vortices to
arise in the Mott insulator when the (dis)order parameter |Φ| is not very big,
so that the dual penetration depth λ̃ is large. The order parameter shrinks
when one approaches the phase transition, and that would be the first place
to look for them. We will have much more to say about these matters in
chapter 5. Here we just show how the vortices arise in the calculation.

3.4.1 Dual vortex current

Vortices arise when there is a non-trivial winding of the dual phase field,∮
dφ=

∮
dxµ∂µφ= 2πN. (3.32)

As before, we split the phase field in a smooth and a multivalued part, φ =
φsmooth +φMV. Then we define the dual vortex current as (cf. Eq. (2.17)),

J V
κλ = εκλµν∂ph

µ ∂
ph
ν φMV. (3.33)

These vortices communicate via the dual currents, the fluctuations in the
Mott order parameter (just as the original superfluid vortices interact via the
zero sound mode). What is the nature of these vortices? The well-understood
central physical quantity in all of our treatment here is the supercurrent wµ.
If we can see how the dual vortex current couples to the supercurrent, we
have a clear interpretation of what the dual vortices really are.
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It is possible to derive this relationship at the level of the Lagrangian,
by introducing new variables that couple to the multivalued phase in the
disordered phase. Then we define yet another gauge field that couples to the
Mott vortices, and integrating out that gauge field will show the coupling
between the Mott vortices and the original supercurrent. But we shall not
take this route because i) the calculation is rather involved and yields no
further insight, and ii) the current will seem to couple non-locally to the
Mott vortices, while it is in fact a local coupling. It is more fruitful to simply
inspect the equations of motion, and identify the physical properties from
there.

3.4.2 Equation of motion: orthogonal projection

When taking the minimal coupling prescription of Eq. (3.26), the action
reads,

L = 1
2

g(εµνκλ∂
ph
ν bκλ)2 + 1

2
|(∂µ− iεµ∥κλbκλ)Φ|2 + ã

2
|Φ|2 + β̃

4
|Φ|4. (3.34)

Varying with respect to bκλ leads to the equation of motion,

− gεκλνµ∂
ph
ν wµ+Φ2

∞εµ∥κλ(∂ph
µ φ−εµ∥ρσbρσ)= 0. (3.35)

Acting on this expression with the operator εαβκλ∂
ph
β

, contracting repeated
indices and substituting (3.33) leads to,

g∂2wµ−Φ2
∞wµ =−Φ2

∞εµ∥κλJ
V
κλ. (3.36)

This is to be compared to the Ginzburg–Landau expression Eq. (2.6) for
the magnetic field sourced by an Abrikosov vortex. Without any vortices
the right-hand side is zero, and the left-hand side indicates that the super-
current decays exponentially over characteristic length scale

√
g/Φ2∞, which

is the expected behaviour for a (Mott) insulating state. Conversely, a Mott
vortex current J V

κλ
is here a source of supercurrent locally. If we neglect the

first term, this expression says that there is current wherever there is a Mott
vortex.

Perhaps puzzling at first sight, this makes perfect sense: recall that a
superconductor expels magnetic field, but an Abrikosov vortex consists of
magnetic field permeating the superconductor through tubes, or rather vor-
tex lines. Here the “type-II Mott insulator” expels current, but the current
can penetrate locally through a vortex line.

56 Chapter 3. Vortex duality in 3+1 dimensions



This equation also illustrates our earlier objections to the minimal cou-
pling prescription Eq. (3.26). On would expect that the current flows parallel
to the vortex line, just as the magnetic field does in a type-II superconductor.
In chapter 5 we see that this is indeed the case. However, Eq. (3.36) would
set the current orthogonal to the vortex world sheet. One could argue that
the vortex world sheet components are just wrongly defined, and need an
additional rotation. However, one then loses the intuitive identification of
the relation to the multivalued phase in real space as in Eq. (3.33). Further-
more, there is no natural way to perform this additional rotation. This form
does however generalize to any higher dimension.

3.4.3 Equation of motion: sum over vortex components

When taking the minimal coupling prescription of Eq. (3.30), the action
reads,

L = 1
2

g(εµνκλ∂
ph
ν bκλ)2 + 1

2
|(1

2

∑
α

δακ∂λ− ibκλ)Φ|2 + ã
2
|Φ|2 + β̃

4
|Φ|4. (3.37)

Varying with respect to bκλ leads to the equation of motion,

− gεκλνµ∂
ph
ν wµ+Φ2

∞
(1
2

∑
α

(δακ∂λφ−δαλ∂κφ)−bκλ
)= 0. (3.38)

Acting on this expression with the operator εαβκλ∂
ph
β

, contracting repeated
indices and substituting (3.33) leads to,

g∂2wµ−Φ2
∞wµ =−Φ2

∞
∑
κ

J V
κµ. (3.39)

The left-hand side is the same as Eq. (3.36), but the right-hand side is rather
different. The interpretation is as follows: a vortex line J V

κµ sources (su-
per)current in the direction µ. All of the components κ contribute to this
current. This may seem awkward now, but has a very natural interpretation
when it represents a moving line of electric current. We will elaborate on
this extensively in §5.2.

Either form of the dual vortex current, Eqs. (3.36) and (3.39), clearly
couples to supercurrent. In this regard the dual vortices exactly mirror the
behaviour of Abrikosov vortices in type-II superconductors: just as super-
conductors expel magnetic field, the Bose-Mott insulator expels supercur-
rent. And just as Abrikosov vortices let magnetic field permeate the super-
conductor in local flux lines, the dual vortices are lines of supercurrent that

3.4 Vortices in the disordered phase 57



superfluid

superfluid

Figure 3.1: Proposed setup to show vortex lines in the Bose-Mott insulator. The
Mott insulator (white) should be sandwiched between two regions with superfluid
order (grey). The order parameter extends outside of the superfluid itself to pierce
through the Mott insulator, in the form of vortex lines.

penetrate the insulator. Therefore we name such systems “type-II Mott insu-
lators”. The correspondence is even more striking when it is a Mott insulator
made out of Cooper pairs, and that is the subject of chapter 5.

3.4.4 Tunnelling experiment

Because the superfluid is charge-neutral, the range of experimental tools
that can probe these materials is limited. On the other hand, cold atoms on
an optical lattice can be tuned at will to the superfluid to Mott-insulating
state [50]. Furthermore, Josephson tunnelling between two superfluids has
also been observed [65, 66]. Let us therefore sketch the outlines of an exper-
iment that would create vortices in a Bose-Mott insulator.

A Josephson junction is a weak link, that can be an insulating barrier,
a strip of vacuum, or just a constriction between to ‘reservoirs’ of super-
conducting order. As mentioned above, the same phenomenon has been ob-
served in superfluids with different chemical potential. We now propose to
make the barrier out of a Bose-Mott insulator near the quantum phase tran-
sition, see figure 3.1. In the regular Josephson effect, the supercurrent would
flow homogeneously through the barrier, the energy cost of which grows with
the volume of the barrier. But in type-II Bose-Mott insulator, the system
can let the supercurrent flow through vortex lines, the energy cost of which
grows with barrier width only. It is exactly like preferring the Abrikosov lat-
tice above the fully magnetized Meissner state in type-II superconductors.

In the charged Mott insulator there is a plethora of possibilities to prove
the existence of the Mott vortices, see §5.6.
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3.4.5 Duality squared

For completeness, let us show that the “duality squared” procedure of §2.4.6
can also be repeated in 3+1 dimensions. As for now, I only know how to do
this for the “orthogonal projection” minimal coupling prescription Eq. (3.26).
But we argued that this must capture the essential physics, so we shall pro-
ceed accordingly.

We will write down only the most important steps. The minimal coupling
term is linearized,

L = 1
2

g(εµνλκ∂
ph
ν bκλ)2 − 1

2
1
Φ2∞

v2
µ−vµ(∂µφ−εµ∥κλbκλ). (3.40)

The condensate phase φ is split into a smooth and a multivalued part. The
smooth part is integrated out to give the constraint ∂ph

µ vµ = 0, which is en-
forced by expressing vµ = εµνκλ∂

ph
ν zκλ. After several partial integrations and

rescaling bκλ→ 1p
g bκλ, this leads to,

L = 1
2

(εµνκλ∂
ph
ν bκλ)2 − 1

2
1
Φ2∞

(εµνκλ∂
ph
ν zκλ)2 + zκλJ V

κλ−
1p
g

zκλεκλµν∂
ph
ν εµ∥ρσbρσ,

(3.41)

where J V
κλ

= εκλµν∂
ph
µ ∂

ph
ν φMV is the Mott vortex current. For contractions in

the last term we use the identity

εκλµ∥εµ∥ρσ = δκρδλσ−δκσδλρ , (3.42)

where the indices on the right-hand side take values orthogonal to ∥ only.
The coupling of the z-gauge field to the b-gauge field then looks like,

1p
g

zκλεκλ∥µ(εµνρσ∂
ph
ν bρσ)= 1p

g
zκλεκλ∥µwµ. (3.43)

The gauge field bρσ only shows up in the combination wµ = εµνρσ∂
ph
ν bρσ,

which can be integrated out to yield a Meissner term for zκλ,

L =−1
2

1
Φ2∞

(εµνκλ∂
ph
ν zκλ)2 − 1

2g
z2
κλ+ zκλJ V

κλ, (3.44)

which is valid in the Lorenz gauge ∂
ph
κ zκλ = 0. Here we have a theory of

Abrikosov vortex strings J V
κλ

that have short-range interactions with each
other through the exchange of massive two-form fields zκλ. When vortices
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proliferate, they are described by a collective field Ψ, minimally coupled to
the gauge field that we have rescaled zκλ→Φ∞zκλ,

L =−1
2

(εµνκλ∂
ph
ν zκλ)2 − Φ

2∞
2g

z2
κλ

− 1
2
|(∂ph

µ − iΦ∞εµ∥κλzκλ)Ψ|2 − 1
2
α|Ψ|2 − 1

4
β|Ψ|4. (3.45)

Through the phase transition, the Mott vortices destroy the dual supercon-
ducting order so that Φ∞ vanishes. Then the gauge field zκλ decouples and
we are left with the action of a neutral superfluid Eq. (2.1), exactly our
starting point. In this way duality2 = 1 also holds in 3+1 dimensions.

3.5 Discussion

This chapter comprises the main result of this thesis: the vortex-boson du-
ality that is so well known in condensed matter physics holds in (at least)
all dimensions larger than two. The reason is that the fundamental physical
quantities are the Noether currents in the ordered phase, and their con-
servation law imposes exactly one constraint. In the disordered phase the
vortex condensate enters as a featureless fluid, whose compression mode is
the additional single degree of freedom, simultaneously responsible for the
demise of the currents, releasing the constraint. Related to this, all correla-
tion functions become short-ranged due to the disorder induced by the vor-
tices. This last statement has a very nice interpretation in terms of emergent
gauge symmetry, which is the topic of chapter 6.

Even if the currents are the principal objects, the gauge fields that can
be defined because of the conservation law have a natural interpretation as
the force carriers of the interaction between vortices. They are the dual of
the Goldstone modes. Precisely because the gauge fields couple to the vor-
tices, they also couple minimally to the vortex condensate disorder parame-
ter field, and are therefore instrumental in the (mathematical) construction
of the dual phase transition. We have noticed that there are at least two
ways to define a suitable minimal coupling, which seem equivalent at the
level of the Lagrangian. But we will see in §5.2 that the precise form is of
importance. There is room for improvement here, also considering that our
proposals Eqs. (3.26) and (3.30) are not strictly gauge invariant.

These details left aside, the formalism developed here is general and
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should be applicable in more complex situations than the simple U(1)-sym-
metry here. The next two chapters are about charged superfluids, supercon-
ductors, in which this global symmetry is coupled to a vector gauge field, the
photon. Chapter 6 alludes to its relevance for quantum liquid crystals. At
the end of the thesis, chapter 7, I will contemplate some further susceptible
cases.

3.A Degrees of freedom counting

We have determined the degrees of freedom by explicit examination of the
action and propagators. There is a more general and formal way of deriving
the propagating degrees of freedom given an action (Coulomb forces do not
fall into this general scheme). It precisely determines the gauge degrees of
freedom and the influence of constraints. This is exhaustively explained in
Ref. [37]. We will very briefly discuss this procedure for free Abelian 1- and
2-forms (op. cit. ch.19).

The Maxwell Lagrangian in d spacetime dimensions is,

L =−1
4

F2
µν =−1

2
(∂µAν−∂νAµ)2. (3.46)

The vector field Aµ has d components, so we start out with d degrees of
freedom. The action is invariant under gauge transformation Aµ → Aµ +
∂µε; furthermore this gauge transformation corresponds to a so-called first-
class constraint, which means it removes two degrees of freedom in total.
The reason for this is that we fix the vector field not only in space at one
moment in time (a time slice), but also its evolution using ∂tε. Another point
of view is that the temporal component At is set by the scalar electrostatic
potential, which is zero everywhere for a free field; the temporal component
is completely fixed by the equation of motion ∇2 Aτ = 0.

Therefore a free vector field in d dimensions has d−2 propagating degrees
of freedom, exactly the transversal polarizations of the photon.

The generalization of (3.46) for an anti-symmetric 2-form field bµν in 4
dimensions is,

L =−1
2

(εµνκλ∂νbκλ)2. (3.47)

The field has six independent components. The action is invariant under
gauge transformations,

bκλ(x)→ bκλ(x)+∂κελ(x)−∂λεκ(x). (3.48)
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Here ελ(x) is any smooth real vector field with 4 components; but there are
only three independent gauge transformations since δλκ(∂κελ−∂λεκ) = 0 al-
ways. As explained above each gauge transformation removes two degrees
of freedom. The transformations are however redundant, since another vec-
tor field,

ε′λ(x)= ελ(x)+∂λη(x), (3.49)

where η is any smooth scalar field gives exactly the same transformation
in (3.48). A free 2-form field in 4 dimensions therefore has 6− (6− 1) = 1
propagating degree of freedom.

3.B Current conservation in electromagnetism

We apply the conservation-of-current considerations to the most famous ex-
ample of the Higgs mechanism: the photon field in 3+1 dimensions coupled
to a complex scalar condensate field. This is variously known as the Abelian–
Higgs model, Ginzburg–Landau theory or scalar QED. It describes the basic
physics of the electromagnetic field in the vacuum and in a superconductor.

The electromagnetic field is a vector field Aµ(x). Its dynamics is governed
by the field strength Fµν = ∂µAµ−∂νAµ and the Maxwell action,

S =
∫

−1
4

F2
µν. (3.50)

The field strength is invariant under the gauge transformation Aµ→ Aµ+∂µε.
The vector field with gauge fix ∂µAµ = 0 has three degrees of freedom: the two
transversal photon polarizations Aθ and Aφ, and the part mediating static
Coulomb interactions A⊥.

The field strength Fµν has six independent components and is therefore
overcounting the degrees of freedom. This can be cured by imposing the
homogeneous Maxwell equations or Bianchi identities,

dF= εµνκλ∂νFκλ = 0. (3.51)

In (∥,⊥,θ,φ)-coordinates (see figure 1.3) this implies that the only non-zero
components of the field strength are F∥ν, which we collect in a vector field fν ≡
F∥ν (the ‘current’). From this point we act as if the field strength F∥ν were not
necessarily anti-symmetric; still the longitudinal component is set to zero as
long as there are no external sources: ∂ν fν = ∂νF∥ν = Jext

∥ → 0 (inhomogeneous
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Maxwell equations). The other three components of fν correspond to the
three physical degrees of freedom identified above via,

fν = pAν. (3.52)

Now we couple the photon field to a complex scalar Higgs field via |∂µΨ| →
|(∂µ− iAµ)Ψ| as in (2.33). The Higgs field describes a condensate destroying
the current conservation, so that the longitudinal component f∥ is released.
Indeed, from (3.52) this corresponds to the longitudinal polarization of the
photon: f∥ = pA∥. In terms of the field strength, it is seen to correspond to the
symmetric component F∥,∥, which is normally not taken into consideration.
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Chapter 4

Electrodynamics of Abrikosov vortices

Having learned that Bose-Mott insulators near the quantum phase transi-
tion support vortex excitations, we would like to study those objects in elec-
trically charged systems: the superconductor to charged Bose-Mott insulator
transition. But first it is necessary to fully understand how the electromag-
netic field comes into play, and therefore this chapter is dedicated to the vor-
tex world sheet formalism in the superconducting state. Here the topological
defects are of course the well-studied Abrikosov vortices we encountered in
§2.1.2. It will prove to be an interesting subject in its own right.

The study of the matter formed from Abrikosov vortices in type-II super-
conductors constitutes a vast and mature research subject. This subject is
crucial for the technological applications of superconductivity [67] but it has
also proven to be a fertile source for fundamental condensed matter phy-
sics research. The elastic and hydrodynamical properties of matter formed
from vortices can be very easily tuned by external means and it has demon-
strated to be an exceedingly fertile model system to study generic questions
regarding crystallization, the effects of background quenched disorder and
so forth [68, 69]. Especially after the discovery of the cuprate high-Tc super-
conductors it became also possible to study the fluids formed from vortices.
Because of the strongly two-dimensional nature of the superconductivity in
the cuprates, the Abrikosov vortex lattice becomes particularly soft and it
melts easily due to thermal motions at temperatures that are much below
the mean field Hc2-line [70].

Many phenomena in this field are of a dynamical nature, associated with
the fact that vortices are in motion. This includes the vortex flow, the mag-

65



netic field penetration and the flux creep, but also the large Nernst effect of
the vortex fluid and, perhaps most spectacularly, the use of cuprate vortices
as source of terahertz radiation [71, 72]. This vortex dynamics is analogous
to the magnetohydrodynamics of electrically charged plasmas in the sense
that the forces exerted on vortices are exclusively of electromagnetic origin,
while in turn the vortex matter backreacts on the electromagnetic fields.
The phenomena that arise are rather thoroughly understood starting from
the AC and DC Josephson relations as well as the Maxwell equations as the
force equations in this “vortex magnetohydrodynamics”.

Although the computations explaining these phenomena are certainly
correct, they are of a rather improvised, ad hoc nature, at least compared to
the Landau–Lifshitz style [73] of deriving the usual magnetohydrodynam-
ics from first principles. In this chapter we show that with the use of the
vortex world sheets in 3+1 dimensional spacetime, all of the phenomena re-
lated to the electrodynamics of vortices in superconductors can be captured
in one concise equation. Furthermore the electrodynamics of stringlike ob-
jects in the absence of monopole sources has very special features, turning
the Maxwell field strength itself into a gauge field.

We shall show quickly how the vortex world sheet current arises in the
relativistic Ginzburg–Landau model. Then we take a small theoretical de-
tour to explore the electrodynamics of two-form sources in general. After
that the rigorous vortex duality is derived for charged superfluids, and fi-
nally we shall present the equations of motion that contain all the electrody-
namical phenomena related to moving Abrikosov vortices. We conclude with
a short outlook.

4.1 The vortex world sheet in relativistic supercon-
ductors

We will now show how the vortex world sheet appears from the Ginzburg–
Landau equations. In §4.2, we shall derive the more generic coupling of a
vortex current to electromagnetic fields.

Before we write down the partition function let us stress that it may be
less familiar to researchers in the field of superconductivity, since it will
be fully relativistic. In particular it will have a squared time-derivative,
whereas most works start with a single time-derivative term. The latter
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applies to systems which are diffusion-limited. Of course, in actual super-
conductors vortices are accompanied by such diffusion processes. However,
the relativistic action is necessary to derive the vortex world sheet. Further-
more processes such as Thomas–Fermi screening are in fact ballistic. Finally
the validity of this relativistic approach is verified by the results of §4.4. If
one wishes to consider diffusion processes, an appropriate term can be added
to the Lagrangian at will.

In this chapter we find it convenient to stay in real time, because we do
not need to carry out the vortex proliferation, and because we can compare
directly to other known results. The partition function associated with the
relativistic Ginzburg–Landau action deep in the superconducting state is (cf.
§§2.1.2,2.4.7),

Z =
∫

DϕDAµF (Aµ)ei/ħ ∫
d4x L , (4.1)

L =− 1
4µ0

F2
µν−

ħ2

2m∗ ρs(∂ph
µ ϕ− e∗

ħ Aph
µ )2. (4.2)

Here Fµν = ∂µAν−∂νAµ is the electromagnetic field strength; F (Aµ) denotes
an appropriate gauge fixing condition; ϕ is the superconducting phase re-
lated to the order parameter Ψ = p

ρseiϕ; ρs is the superfluid density; m∗

and e∗ are the mass and charge of a Cooper pair; and most importantly,
one must take great care to differentiate between the two velocities in the
problem, namely the velocity of light c pertaining to the photon field Aµ,
and the phase velocity in the superconductor cph. Therefore we have defined
∂µ = (∂0,∇), ∂0 = 1

c∂t and ∂
ph
µ = (∂ph

0 ,∇), ∂ph
0 = 1

cph
∂t. Furthermore Aµ = (− 1

c V ,A)

and Aph
µ = (− 1

cph
V ,A). The last form is dictated by gauge invariance of the

second term in Eq. (4.2).
We shall for the moment proceed in the relativistic limit where cph = c, for

simplicity. The equations of motion then follow from variation with respect
to Aν,

∂µ
∂L

∂(∂µAν)
− ∂L

∂Aν
=− 1

µ0
∂µ(∂µAν−∂νAµ)− ħ2

m∗ ρs
e∗

ħ (∂νϕ− e∗

ħ Aν)= 0. (4.3)

Now we act with εκλρν∂ρ on this equation, which leads to,

−λ2(εκλρν∂2
µ∂ρAν−�����εκλρν∂ρ∂ν∂µAµ)+εκλρν∂ρAν = ħ

e∗
εκλρν∂ρ∂νϕ= ħ

e∗
JV
κλ. (4.4)

Here we have defined the London penetration depth λ=
√

m∗
µ0 e∗2ρs

; the second
term vanishes because the antisymmetric contraction of two derivatives; and
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on the right-hand side we recognize from Eq. (2.17) the definition of the vor-
tex current JV

κλ
. Let us consider the special case κ= t, and use the definition

of the magnetic field Bl = εlrn∂r An,

−λ2∂2
µBl +Bl =

ħ
e∗

JV
tl =

ħ
e∗

2πNδ(2)
l (x). (4.5)

Here we have used Eq. (2.17) in the last equality. This is precisely the
textbook equation for the Meissner screening of a vortex source of strength
N, with flux quantum Φ0 = 2πħ/e∗ Eq. (2.6), [51, eq.(5.10)]. But instead of
ad hoc inserting the delta-function source, we actually derived it from the
singular phase field. The only difference is that here also the dynamics is
taken into account via the double time derivative contained in ∂2

µ. The true
power of the vortex world sheet shows itself when considering the electric
field E =−∇A0 −∂tA and the spatial components JV

kl of the vortex field. This
will be further elaborated on in §4.4. But let us first analyze how two-form
sources couple to electromagnetism in general, followed by a more general
derivation of the above relations invoking a duality mapping, by which we
can treat the vortex fields in the action itself, rather than only in the equa-
tions of motion. This can be regarded as revealing the more fundamental
structure of the problem. The reader who is less interested in these theoret-
ical matters may skip ahead directly to §4.4.

4.2 Electrodynamics of two-form sources

We will formulate here the generalization of the standard Maxwell action
and equations of motion when the sources are not monopoles with charge
density ρ and current Jm, collected in a vector field Jµ = (cρ, Jm), but instead
(vortex) lines with line densities Jtl and line currents Jkl (which denote the
current in direction k of a line that extends in direction l), collected in a
two-form field Jκλ = (Jtl , Jkl). Let us first recall the established knowledge
for ordinary electromagnetism, in terms suited for this generalization. For
clarity we again use a shorthand notation where we are intentionally sloppy
with contra- and covariant indices, leaving out dimensionful parameters in
order to maximally expose the principles. In the next section we will present
the final results that are accurate in this regard.
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4.2.1 Maxwell action with monopole sources

Let us start by considering a set of electrical monopole sources collected in a
source field Jµ as in the above, satisfying a continuity equation/conservation
law ∂µJµ = 0. These sources interact via the exchange of gauge particles, as
gauge fields Aµ that couple locally to the source fields, by an interaction term
in the Lagrangian of the form AµJµ. Because of current conservation, any
transformation of the gauge field Aµ→ Aµ+∂µε, where ε is any smooth scalar
field, will leave the coupling term invariant. Indeed,

AµJµ→ AµJµ+ (∂µε)Jµ = AµJµ−ε∂µJµ = AµJµ. (4.6)

Here we performed partial integration in the second step. The field strength
Fµν = ∂µAν − ∂νAµ is also invariant under the same gauge transformation.
An immediate consequence of this definition are the Bianchi identities or
homogeneous Maxwell equations,

εαβµν∂βFµν = εαβµν∂β∂µAν = 0, (4.7)

because the derivatives commute. These equations comprise ∇ ·B = 0 and
∇×E=−∂tB. This suggests a Lagrangian of gauge invariant terms,

LMaxwell =−1
4

FµνFµν+ AµJµ, (4.8)

accompanied by the Euler–Lagrange equations of motion obtained by varia-
tion with respect to Aν,

∂µFµν =−Jν. (4.9)

These are the inhomogeneous Maxwell equations comprising ∇ ·E = ρ and
∇×B− ∂tE = J. In a superconductor, one must also add a Meissner term,
which in the unitary gauge fix turns into a mass term for the gauge field Aµ,

LMaxwell + Meissner =−1
4

FµνFµν− 1
2

AµAµ+ AµJµ, (4.10)

In this form, the Meissner term breaks the gauge invariance of the Lagran-
gian. This corresponds to releasing the longitudinal degrees of freedom
of the photon field. A gauge equivalent perspective is that this degree of
freedom represents the phase mode of the superconducting condensate (see
§3.2.2). The equation of motion is modified to,

∂µFµν− Aν =−Jν. (4.11)
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4.2.2 General two-form sources

Let us now repeat this procedure for antisymmetric two-form sources Jκλ =
(Jtl , Jkl). These must obey the continuity equations (i.e. conservation laws)
∂κJκλ = 0, reflecting that the density of the source can only increase (de-
crease) when it flows into (out of) the region under consideration, and that
vortex lines cannot end within in the system (no monopoles). Consider now
that these sources interact by exchanging two-form gauge fields, that we
will tentatively denote by Gκλ. Then these gauge fields couple locally to the
sources as GκλJκλ. These fields have to transform under gauge transforma-
tions as,

Gκλ→Gκλ+ 1
2

(∂κελ−∂λεκ), (4.12)

where ελ is any smooth vector field, in order to leave the coupling term in-
variant as required by the current conservation. Indeed,

GκλJκλ→GκλJκλ+ (∂κελ)Jκλ =GκλJκλ−ελ∂κJκλ =GκλJκλ. (4.13)

Here we have used the antisymmetry of Jκλ in the first step, and partial
integration in the second. The field strength Hµκλ = ∂[µGκλ] = ∂µGκλ+∂λGµκ+
∂κGλµ is also invariant under these gauge transformations. An immediate
consequence of this definition is the Bianchi identity,

ενµκλ∂νHµκλ = ∂[ν∂µGκλ] = 0, (4.14)

because the derivatives commute. With these definitions, we can write down
a gauge invariant Lagrangian,

L =− 1
12

H2
µκλ+GκλJκλ. (4.15)

Note that this Lagrangian is in terms of the dynamic variables Gκλ, which
we will see later is the dual of the electromagnetic field strength Fµν. In
other words, this Lagrangian is in terms of the electric and magnetic fields
themselves, rather than the gauge potential Aµ. The equations of motion
follow after variation with respect to Gκλ,

∂µHµκλ =−Jκλ. (4.16)

Now, in a gauge-invariance breaking medium such as a superconductor, one
must add a Higgs or Meissner term to the Lagrangian as,

L =− 1
12

H2
µκλ−

1
4

G2
κλ+GκλJκλ. (4.17)
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4.2.3 Abrikosov vortex sources

Up to now we have just reviewed the standard derivation of non-compact
U(1) two-form gauge theory. Let us now specialize to the case of a vortex line
in a superconductor. For such an Abrikosov vortex, we know that the density
JV

tl is proportional to the magnetic field, and that the magnetic field is par-
allel to the spatial orientation of the vortex line. In fact, when the magnetic
field intensity coincides with the lower critical field Hc1, the dimensionful
vortex density may be denoted as before, Eq. (4.5),

JV
tl =Φ0δ

(2)
l (r), (4.18)

where Φ0 is the flux quantum h
e∗ . Because of these considerations, the vortex

line density should couple to the magnetic field Bl . The definition of the
Maxwell field strength is,

Ftn = En Fmn = εmnlBl , (4.19)

If we contract the last definition with
∑

mn εtbmn, one finds Bl = εtlmnFmn ≡
G tl . Here we introduce the Hodge dual of the Maxwell field strength Gαβ ≡
1
2εαβµνFµν. Then the coupling of the vortex line density JV

tl to the magnetic
field Bl is written as G tl JV

tl and generalizes to GκλJV
κλ

. Therefore, the general
two-form gauge field in Eq. (4.15) is now identified as the dual Maxwell field
strength Gκλ.

4.2.4 Gauge freedom of the field strength

This leads immediately to an astonishing consequence: the Maxwell field
strength Fµν itself has now become a gauge field ! The gauge transformations
Eq. (4.12) correspond to,

Fµν→ Fµν+εµνκλ∂κελ. (4.20)

How does it come about that these all too physical Fµν’s have suddenly
turned into gauge variant quantities? The reason is simple although per-
haps defeating the physical intuition: in normal matter we always have
electric monopole sources Jν with the associated equations of motion ∂µFµν =
−Jν. In the absence of any such sources, these equations reduce to ∂µFµν = 0.
Together with the inhomogeneous Maxwell equations εαβµν∂βFµν = 0, these
imply that the field strength cannot be measured at all. It amounts to the
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Schwinger wisdom that fields which cannot be sourced do not have physi-
cal reality [62]. The formal expression of this fact is that the field strength
becomes pure gauge in the absence of monopole sources.

Another insight is obtained by taking a closer look at the gauge transfor-
mations Eq. (4.20). For the Bianchi identities in Eq. (4.7) these imply,

εαβµν∂βFµν→ εαβµν∂βFµν+εαβµν∂βεµνκλ∂κελ
= εαβµν∂βFµν+ (∂α∂λ−∂2δαλ)ελ. (4.21)

In other words, the Bianchi identities are not invariant under these gauge
transformations! This makes sense: these identities are a direct result of
expressing the field strength in terms of a gauge potential Aν, which of itself
has three degrees of freedom (four minus one gauge freedom). The Bianchi
identities serve to restrict the six degrees of freedom contained in Fµν to
the proper number of three1. Conversely, in the derivation of the two-form
action Eq. (4.15), we have not assumed anything about the origin of the two-
form field. Next to three physical degrees of freedom, there are three gauge
degrees of freedom. Therefore the constraints εαβµν∂βFµν = 0 are not strictly
enforced, but can always be obtained by a suitable gauge transformation.

We never observe the gauge character of the fields Fµν themselves be-
cause the only two-form sources to which this action applies that we know
of are Abrikosov vortices in a superconductor. The superconducting matter
causes a finite penetration depth λ for the fields, which is reflected by the
addition of a Meissner term to the Lagrangian. The gauge-invariant form of
this term is known to be,

Hκλµ
1
∂2 Hκλµ =−Gκλ

δκµ∂
2 −∂κ∂µ
∂2 Gκλ, (4.22)

in the same way as one can formally write the Meissner term in Eq. (4.10)
as Fµν

1
∂2 Fµν [cf. Eq. (3.23)]. However, since the longitudinal components of

Gκλ are not sourced by the conserved Abrikosov vortices, we are naturally
led to the Lorenz gauge condition ∂κGκλ = 0, and the gauge freedom has been
removed. With this gauge condition Eq. (4.22) reduces to GκλGκλ, that ap-
pears in Eq. (4.17). In other words, the superconducting medium forces us
to the fixed frame action Eq. (4.17).

1In light of the discussion in §3.A, we refer here to the general case for the field strength,
without restricting to a particular action. Surely a massless photon field has only two propa-
gating degrees of freedom, but that follows only after ascertaining the Maxwell action.
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4.2.5 Vortex equation of motion

We end up with the action Eq. (4.17), and we now put in dimensionful pa-
rameters. Please note that this action is equivalent to the regular action as
(4.2), but with the important difference that here we work with the dual field
strength Gκλ as the dynamic variable instead of the gauge potential Aµ .The
equations of motion (“Maxwell equations for relativistic vortices”) are now
obtained straightforwardly by varying with respect to Gκλ as,

λ2(∂2Gµν−∂µ∂κGκν+∂ν∂κGκµ)−Gµν =− ħ
e∗

JV
µν. (4.23)

This is to be compared with Eq. (4.11) and Eq. (4.5). The second and third
term can be set to zero by a gauge transformation Eq. (4.20) or alterna-
tively by invoking the Bianchi identities Eq. (4.7). The meaning of these
equations is that the two-form source JV

κλ
, causes an electromagnetic field

Gµν = 1
2εµνκλFκλ that is now Meissner screened over a length scale λ. The

case µ= t, together with the definition Bn = 1
2εnabFab reduces to Eq. (4.5).

4.2.6 Summary

Summarizing, we have shown here that the action Eq. (4.17) can be postu-
lated, from which the correct equations of motion as introduced in §4.1 di-
rectly follow, without ever mentioning the gauge potential Aµ. One trades in
the Bianchi identities Eq. (4.7) for a set of gauge transformations Eq. (4.20).
This action is only meaningful in the absence of monopole sources, but is
very appropriate when considering two-form sources such as Abrikosov vor-
tices. In the case that the penetration depth λ becomes infinitely large, the
field strength Fµν recovers its status as a gauge field. This would correspond
to the Coulomb phase of two-form sources, as opposed to the Higgs phase
that is always realized in superconductors.

As a final note it should be stressed, that although the vortex source is
intrinsically dipolar in nature, the equations stated above are not generally
valid for any dipole source. Here, the direction of the vortex line is always
parallel to the dipole moment. If one should instead consider for instance
a string of ferromagnetic material with moments not along the string, one
must revert to the omnipotent regular Maxwell equations.

For the reader familiar with differential forms, I have included appendix
4.A repeating these considerations in metric-independent language, valid in
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any spatial dimension higher than 2.

4.3 Vortex duality in charged superfluids

We shall now rigorously derive the coupling of Abrikosov vortex sources to
the electromagnetic fields, starting from the action describing a supercon-
ductor in 3+1 dimensions. This follows the same pattern as the uncharged
superfluid of chapter 3, extended by minimally coupling in the electromag-
netic field. For 2+1 dimensions this was done in §2.4.7. We end up with an
effective action describing the electrodynamics of vortices.

4.3.1 Dual Ginzburg–Landau action

Our starting point is the partition function Eq. (4.1). To keep the equa-
tions readable, we will transform to dimensionless units denoted by a prime
(which we suppress when matters are unambiguous),

S′ = 1
ħS, x′m = 1

a
xm, t′ = c

a
t, A′

µ =
ae∗

ħ Aµ, ρ′ = ħa2

m∗c
ρs,

1
µ′

= ħ
µ0ce∗2 . (4.24)

Here a is a length scale relevant in the system, for instance the lattice con-
stant. We will assume the relativistic limit cph = c; later we shall return to
dimensionful quantities and it will become clear that the phase velocity is
playing an essential role for the description of the non-relativistic vortices.
The partition function in these dimensionless units reads,

Z =
∫

DϕDAµF (Aµ)ei
∫

d4x L , (4.25)

L =− 1
4µ

F2
µν−

1
2
ρ(∂µϕ− Aµ)2. (4.26)

Now we perform the dualization procedure. A Hubbard–Stratonovich
transformation of Eq. (4.25) leads to,

Z =
∫

DwµDϕDAµF (Aµ)ei
∫

Ldual , (4.27)

Ldual =− 1
4µ

F2
µν+

1
2ρ

wµwµ−wµ(∂µϕ− Aµ). (4.28)

Here wµ is the auxiliary variable in the transformation, but it is actually the
canonical momentum related to the velocity ∂µϕ, which can be found as,

wµ =− ∂L

∂(∂µϕ)
= ρ(∂µϕ− Aµ), (4.29)
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and is related to the supercurrent as wµ = e∗
ħ Jµ. If one integrates out the field

wµ from Eq. (4.27), one retrieves Eq. (4.25). In the presence of Abrikosov
vortices, the superconductor phase ϕ is no longer everywhere single-valued.
Therefore it is separated into smooth and multivalued parts ϕ = ϕsmooth +
ϕMV. The smooth part can be partially integrated yielding,

Z =
∫

DwµDϕsmooth DϕMV DAµF (Aµ)ei
∫

Ldual , (4.30)

Ldual =− 1
4µ

F2
µν+

1
ρ

wµwµ+ϕsmooth∂µwµ−wµ∂µϕMV +wµAµ. (4.31)

Notice that the photon field is wired in just by coupling to the supercurrent.
The smooth part can now be integrated out as a Lagrange multiplier turn-
ing into the constraint ∂µwµ = 0, the supercurrent continuity equation. This
constraint can be explicitly enforced by expressing wµ as the curl of a gauge
field,

wµ = εµνκλ∂νbκλ. (4.32)

4.3.2 Abrikosov vortex world sheets

We can now substitute this expression in the partition function; the integral
over the fields wµ is replaced by one over bκλ, as long as we apply a gauge
fixing term F (bκλ) to take care of the redundant degrees of freedom. Since
the gauge field is smooth it can be partially integrated to give,

Z =
∫

DϕMV DAµF (Aµ)DbκλF (bκλ)ei
∫

Ldual , (4.33)

Ldual =− 1
4µ

F2
µν+

1
ρ

(εµνκλ∂νbκλ)2 −bκλεκλνµ∂ν∂µϕMV +bκλεκλνµ∂νAµ. (4.34)

Here we recognize the definition Eq. (2.17) of the vortex source,

JV
κλ = εκλνµ∂ν∂µϕMV, (4.35)

and we have derived the dual partition function,

Z =
∫

DJV
κλDAµF (Aµ)DbκλF (bκλ)ei

∫
Ldual , (4.36)

Ldual =− 1
4µ

F2
µν+

1
ρ

(εµνκλ∂νbκλ)2 −bκλJV
κλ+bκλεκλνµ∂νAµ. (4.37)

The interpretation is as follows. The vortex sources JV
κλ

interact through the
exchange of dual gauge particles bκλ coding for the long range vortex–vortex
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interactions mediated by the condensate. The gauge field bκλ couples as well
to the electromagnetic field Aµ. Integrating out the electromagnetic field will
lead to a Meissner/Higgs term ∼ b2

κλ
, showing that the interaction between

vortices is actually short-ranged in the superconductor. However, we are
instead interested in how the electromagnetic field couples to the vortices
themselves. Therefore, we shall integrate out the dual gauge field bκλ.

The first step is to complete the square in bκλ. The kinetic term for bκλ is
proportional to,

−bκλεκλµν∂νερσαµ∂αbρσ =−bκλ(δκµ∂2 −∂κ∂µ)bµλ ≡−bκλG−1
0

κµ
bµλ. (4.38)

Here G−1
0

κµ is the inverse propagator. However, this expression cannot be
inverted (the same problem arises in the quantization of the photon field).
We can solve this by imposing the Lorenz gauge condition ∂κbκλ = 0. Then the
inverse propagator is simply G−1

0
κµ = δκµ∂2, and its inverse is G0κµ = δκµ

1
∂2 .

Now we can complete the square,

Ldual =
1
2

(
bκλ− ρ

∂2 JV
κλ+εκλνµ∂νAµ

)(− ∂2

ρ

)(
bκλ− ρ

∂2 JVκλ+εκλρσ∂ρAσ

)
− 1

2
(− JV

κλ+εκλνµ∂νAµ
)(− ρ

∂2

)(− JVκλ+εκλνµ∂νAµ

)− 1
4µ

F2
µν. (4.39)

Then we shift the field bκλ → bκλ+ ρ

∂2 JV
κλ

− εκλνµ∂νAµ and integrate it out in
the path integral to leave an unimportant constant factor. Expanding the
remaining terms leads to,

Ldual =
1
2

JV
κλ

ρ

∂2 JVκλ+ 1
2
εκλνµ∂

νAµ ρ

∂2 ε
κλρσ∂ρAσ−ρJV

κλε
κλνµ ∂ν

∂2 Aµ− 1
4µ

F2
µν

= 1
2

JV
κλ

ρ

∂2 JVκλ− 1
2
ρAµAµ−ρJV

κλε
κλνµ ∂ν

∂2 Aµ− 1
4µ

F2
µν. (4.40)

In going to the second line we have performed partial integration on the sec-
ond term and invoked the Lorenz gauge condition ∂µAµ = 0. We can immedi-
ately read off the physics encoded in this action: the first term describes the
core energy of the vortices and we shall not need it in this work; the second
term is the Higgs mass (including Meissner) for the electromagnetic field;
the third term is the coupling term between the electromagnetic field and
the vortex source. This term looks rather awkward given the derivatives in
the denominator. This could signal that the coupling is non-local but that is
not the case here. The origin of this coupling follows from the notions pre-
sented in section 4.2: it is not the gauge potential Aµ but rather the field
strength Fµν itself that couples to the vortex source.
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4.3.3 Equations of motion

We can confirm this expectation by computing the equations of motion,

1
µ
∂µFµν+ρεµνκλ ∂µ

∂2 JV
κλ−ρAν = 0. (4.41)

Acting with εαβγν∂
γ on this equation, one obtains,

1
µρ

εαβγν∂
γ∂µFµν+εαβγνεµνκλ

∂γ∂µ

∂2 JV
κλ−εαβγν∂γAν = 0 (4.42)

Using Fµν = ∂µAν−∂νAµ one can see that from the first term only εαβµν∂
2Fµν

survives. Also, using ∂κJV
κλ

= 0 one can see that εαβγνεµνκλ∂γ∂µJV
κλ

= ∂2JV
αβ

,
cancelling the derivatives in the denominator. Altogether we find,

1
2µρ

εαβµν∂
2Fµν− 1

2
εαβµνFµν =−JV

αβ. (4.43)

This is the same result as Eq. (4.23). Notice that it is a completely local ex-
pression. As we announced earlier, we have derived here with a completely
controlled procedure the dimensionless version of Eq. (4.5), describing the
interactions between the vortices and electromagnetic fields inside a rela-
tivistic superconductor. Departing from this result we will derive in the next
section various physical consequences. Summarizing this section, by dual-
izing the Ginzburg–Landau action for the superconductor, Eq. (4.25) was
reformulated in terms of the vortex currents Eq. (4.35) as the active de-
grees of freedom, that interact via the effective gauge fields parametrizing
the rigidity of the superconductor. The latter were integrated out to obtain
the direct coupling of the vortices to the electromagnetic field, leading even-
tually to the concise equations of motion Eq. (4.43). Although this strategy
is well known dealing with vortex ‘particles’ in 2+1 dimensions we are not
aware that it was ever explored in the context of the electrodynamics of vor-
tices in 3+1d. Surely, the derivation presented in the above is in regard with
its rigour and completeness strongly contrasting with the rather ad hoc way
that the problem is addressed in the standard textbooks [51, eq.(5.13)].

4.4 Vortex electrodynamics

In order to establish contact with the physics in the laboratory all that re-
mains to be done is to break the Lorentz invariance, doing justice to the
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fact that the phase velocity of the superconductor as introduced in the first
paragraphs of Section 4.1 is of order of the Fermi velocity of the metal and
thereby a tiny fraction of the speed of light. Subsequently we will analyze
what the physical ramifications are of our “Maxwell equations for vortices”.

4.4.1 Non-relativistic dual action

The non-relativistic version of the vortex action Eq. (4.40) is,

L = ħ2

2m∗ ρs JV
tl

1
−1/c2

ph∂
2
t +∂2

k
JV

tl −
ħ2

2m∗ ρs JV
kl

c2
ph

−1/c2
ph∂

2
t +∂2

k
JV

kl

− e∗2

2m∗c2
ph
ρsV 2 − e∗2

2m∗ ρs A2
m

− e∗ħ
m∗ ρs

1
− 1

c2
ph
∂2

t +∂2
k

[ 1
cph

JV
abεabtm(∂t Am +∂mV )+ 1

2
JV

taεtamn∂m An
]

+ 1
2µ0c2 (∂t An +∂nV )2 − 1

4µ0
(∂m An −∂n Am)2. (4.44)

4.4.2 Non-relativistic equations of motion

Varying with respect to Aν, acting with εαβγν∂
γ and imposing current conser-

vation ∂κJV
κλ

= 0 will lead to the correct non-relativistic form of the equations
of motion Eq. (4.4). However the easiest way to obtain these is to vary Eq.
(4.2) directly with respect to V and An respectively,

−
c2

ph

c2 λ2∂nEn −V = ħ
e∗
∂tϕ, (4.45)

−λ2 1
c2 ∂tEn +λ2εnmk∂mBk + An = ħ

e∗
∂nϕ. (4.46)

Here λ =
√

m∗
µ0 e∗2ρs

is the London penetration depth. Now we operate on the

first equation by ∂m = 1
2εmtabεabrt∂r, and on the second by δmn∂t = 1

2εtmabεabtn∂t

and εtamn∂m respectively to obtain,

−
c2

ph

c2 λ2∂m∂nEn −∂mV = ħ
e∗

cph
1
2
εmtab JV

ab, (4.47)

−λ2 1
c2 ∂

2
t Em −λ2∂2

n∂t Am +∂t Am = ħ
e∗

cph
1
2
εtmab JV

ab, (4.48)

λ2(∇2 − 1
c2 ∂

2
t )Ba −Ba =− ħ

e∗
JV

ta. (4.49)
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For the last equation we used the Maxwell equations ∇×E=−∂tB and ∇·B= 0.
This one is equal to the one we found before in Eq. (4.5), obviously, since
there the temporal terms do not come into play.

For the equations for the electric field is it useful to choose the Coulomb
gauge ∇·A= 0, and separate the electric field in longitudinal and transversal
parts: E=EL +ET, where ∇×EL = 0 and ∇·ET = 0. In the Coulomb gauge we
see from the definition E =−∇V −∂tA that EL =−∇V and ET =−∂tA. We can
subtract the first equation above from the second to obtain,

λ2(− 1
c2 ∂

2
t Em +∇2ET

m +
c2

ph

c2 ∇2EL
m

)−Em = ħ
e∗

cphεtmab JV
ab. (4.50)

Hence, as in the case of the Maxwell theory for non-relativistic matter
one finds instead of the highly symmetric relativistic result Eq. (4.4) two
equations of motion that are representing the spatial (magnetic) and tempo-
ral (electrical) sides of the physics, Eq. (4.49) and Eq. (4.50). One notices
that the first ‘magnetic’ equation is quite like the relativistic one while the
‘electrical’ equation is now more complicated for reasons that will become
clear in a moment.

The factor cph on the right-hand side of the electric equation is due to our
convention of rescaling the time derivative to having units of 1/length in the
definition of JV

κλ
. Thus all components of JV

κλ
have dimensions of a surface

density, and multiplying by a velocity is necessary to end up with a current
density. The sign difference on the right-hand side between the electric and
magnetic equations is related to the continuity equation 1

cph
∂t JV

tn =−∂m JV
mb.

To grasp the content of these equations, one should compare the magnetic
equation Eq. (4.49) with the standard form [51, eq.(5.13)],

λ2∇2Ba −Ba =−Φ0δ
(2)
a (r), (4.51)

Here Φ0 = 2πħ/e∗ is the flux quantum. The factor of 2π is associated with
the definition of JV as in Eq. (2.17). Our treatment automatically takes dy-
namics into account in the form of temporal derivatives. Otherwise, the
correspondence is complete. We have indeed exactly recovered the well-
established vortex equation of motion.

The equation for the electric field (4.50) looks more involved, but this can
be made more insightful by writing the equations for the longitudinal and
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transversal parts separately,

λ2(
c2

ph

c2 ∇2 − 1
c2 ∂

2
t )EL

m −EL
m = ħ

e∗
cphε

L
tmab JV

ab, (4.52)

λ2(∇2 − 1
c2 ∂

2
t )ET

m −ET
m = ħ

e∗
cphε

T
tmab JV

ab. (4.53)

The labels on the ε-symbol denote that they include a longitudinal or trans-
versal projection.

We want to point out for future reference that, applying the curl operator
to Eq. (4.49), in the absence of vortex sources, and using ∇×B = −µ0J (the
Ampère–Maxwell equation in the static limit), one finds,

λ2∇2J−J= 0. (4.54)

This denotes the perhaps counterintuitive result that the current is screened
inside the superconductor. The reason is that a current induces a magnetic
field locally, and the superconductor wants to expel the magnetic field. As
such, all current through a superconductor flows through a thin layer near
the boundary of typical size λ.

4.4.3 Vortex phenomenology

We can now read off the following physical relations:
1. Meissner screening: from Eq. (4.49) in the static limit ∂t → 0, a vor-

tex line sources a magnetic field, that falls off in the superconductor with a
length scale λ, the familiar Meissner effect.

2. Thomas–Fermi screening: from Eq. (4.52) one infers that the longitudi-
nal (electrostatic) electric field penetrates up to a much smaller length cph

c λ,
which is the Thomas–Fermi length (c ≈ 300cph). This just amounts to the
well-known fact that the electrical screening is the same in the metal as in
the superconductor. Notice that this length scale is obtained without referral
to the electrons in the normal metal state as in the textbook derivation.

3. Dynamic Meissner screening or the Higgs mass: taking into account
the time-dependence, Eq. (4.49) and Eq. (4.53) show that the transversal
photon parts of the fields are screened not only in space, but also in time
with characteristic time scale λ

c . This is just the familiar statement that the
two propagating photon polarizations in 3+1 dimensions acquire a “Higgs
mass” ∼ ħ

λc inside the superconductor.
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B

(a) A vortex in a Josephson junction be-
tween two superconductors (grey); it has no
normal core. The magnetic field B is along
the vortex; any electric field across the
junction causes the vortex to move in the
perpendicular direction. Such motion in-
duces electromagnetic radiation that may
escape to the outside world.

B
E

v

(b) Geometry of the electric field E gener-
ated by a vortex line parallel to the mag-
netic field B and moving with a speed v.
This phenomenon related to the Lorentz
force follows directly from the vortex equa-
tions of motion.

Figure 4.1: Additional vortex configurations

4. Electrical field of a moving vortex and the Nernst effect: disregarding
the dynamical term in Eq. (4.50), one is left with

Em =− ħ
e∗

cphεtmkl JV
kl . (4.55)

Recall from section 2.2.4 that we had interpreted JV
kl as the flow or velocity

in the k-direction of a vortex line in the l direction. Since we know that
one vortex line carries a magnetic flux of Φ0 = 2π ħ

e∗ , we can write ħ
e∗ cphJV

kl =
vlB0

k, where B0 denotes the field associated with one quantum of flux, and
vl = cph ê l is the velocity. In practice there is always a drag force that greatly
slows down the vortices. Still, Josephson vortices that do not have a normal
core (Fig. 4.1(a)) may achieve this large speed. With this interpretation,
(4.50) reads,

E=−v×B0, (4.56)

which is precisely the known result [74] for the electric field generated by a
vortex moving in a magnetic field B0 (Fig. 4.1(b)). When the motion is caused
by a temperature gradient this is responsible for the large Nernst effect of
the vortex fluid.

5. AC Josephson relation: another interpretation of Eq. (4.52) is found
by inserting the definition of the vortex current, JV

ab = εabtn
1

cph
∂t∂nϕ, taking
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m as the longitudinal direction and neglecting the higher derivative terms.
In this case,

∂mV = ħ
e∗
∂t(∂mϕ). (4.57)

Here the left-hand side is the potential difference, and the right-hand side is
the time derivative of the superconducting phase difference. This is exactly
the AC Josephson relation. The full equations Eq. (4.50) reveal also that the
induced electric field is screened inside the superconductor.

6. Moving vortices as radiation sources: in the same spirit, the moving
vortex is also inducing dynamic transversal fields according to Eq. (4.53).
In other words: moving vortices radiate [71]. But since the field is Meissner
screened, it is very hard to detect this radiation. All our results also apply
to Josephson vortices (line vortex solutions in a Josephson junction between
two superconductors parallel to the interface, Fig. 4.1(a)), which differ only
in the regard that they do not have a normal core. There is much recent in-
terest in radiation from (arrays of) Josephson junctions, see e.g. [75]. Since
inside the junction the field is not expelled by Meissner and metallic screen-
ing, the radiation may escape to the outside world. In this literature one
finds the following result [76, eq.(13)],

− λ̂2∇2A+A= ħ
e∗

∇φ. (4.58)

Here λ̂ differs from λ because of a special geometry. Compare this with a
result that follows from Eq. (4.53),

∂t
[−λ2(

(∇2 − 1
c2 ∂

2
t )A+A

]= ∂t
[ ħ

e∗
∇ϕ]

, (4.59)

confirming Eq. (4.58) but showing in addition how to take care of a possible
time dependence of the photon field.

Summarizing, to the best of my knowledge we have addressed all known
electrodynamical properties of vortex matter departing from a single action
principle.

4.5 Outlook

I am of the opinion that our action principle for vortex electrodynamics Eq.
(4.40) resp. (4.44) and the associated “vortex-Maxwell” equations Eq. (4.43),
(4.49) and (4.50) deserve a place in the textbooks on the subject. In contrast
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with the clever but improvising discussions one usually finds, our formula-
tion has the same ‘mechanical’ quality as for instance the Landau–Lifshitz
treatise of electromagnetism. One just departs from the fundamentals, to
expose the consequences by unambiguous and straightforward algebraic ma-
nipulations that are worshipped by any student of physics. A potential hur-
dle is that one has to get familiar with the two-form gauge field formalism,
but then again this belongs to the kindergarten of differential geometry and
string theory.

The analysis also reveals the origin of the peculiar nature of this vortex
electrodynamics. The realization that it is in fact governed by a two-form
gauge structure amounts to an entertaining excursion in the fundamen-
tals of gauge theory itself, nota bene associated with the superficially rather
mundane and technology-oriented vortex physics, at least when viewed from
the perspective of fundamental physics. In the next chapter we will en-
counter more surprises when we investigate the electrodynamics of vortices
in Bose-Mott insulators

On the practical side, as we implicitly emphasized in the last section
our approach offers a unified description of the electrodynamics of vortices.
Although we got as far as recovering the known physical effects in terms of
special limits of our equations, there is potential to use them to identify hith-
erto unknown effects and perhaps to arrive at a more complete description
of the electrodynamics vortex matter. As we are well aware of the large body
of knowledge of this large field in physics, this is left as an open question to
the real experts.

4.A Electrodynamics with differential forms

For the reader familiar with the mathematical language of differential forms,
we present the electrodynamics of vortex sources for any dimension d = D+1
higher than 2. For our purposes, a differential form can be thought of as
something that can be integrated over; in other words: it is a density func-
tion combined with the integrand. For instance, the electric field is a 1-form
E = E idxi = Exdx+E ydy+Ezdz. Higher forms are always obtained through
the wedge product a∧b, which is the antisymmetrization of the tensor prod-
uct of a and b. Another common operation is the Hodge dual ∗a of a, which
turns an n-form into a (d−n)-form. For instance in three spatial dimensions
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name field ?-form 2+1d 3+1d representative in
d=3+1

electric field E 1 1 1 Ex dx
dielectric current D= ε∗s E d-2 1 2 Dx dy∧dz
magnetic field B 2 2 2 Bx dy∧dz
magnetic intensity H=µ∗s B d-3 0 1 Hx dx
charge density ρ d-1 2 3 ρ dx∧dy∧dz
current density J d-2 1 2 Jx dy∧dz
covariant current j= ρ+J∧dt d-1 2 3 jx dy∧dz∧dt
field strength F=B+E∧dt 2 2 2 Fxy dx∧dy
gauge potential A 1 1 1 Ax dx
vortex source JV d-2 1 2 JV

xy dx∧dy
Lagrangian density L d 3 4 L dt∧dx∧dy∧dz

Table 4.1: Electrodynamical quantities in differential forms. Here ε and µ are the
electric permittivity and the magnetic permeability, and ∗s is the spatial Hodge dual.
Other factors of c are suppressed. Minus signs are subject to convention.

∗E= Exdy∧dz+E ydz∧dx+Ezdx∧dy. For a pedagogical introduction to differ-
ential forms in Maxwell electrodynamics see [77].

In the familiar case of d = 3+ 1, a 1-form is a line density or “field in-
tensity” like the electric field; a 2-form is a surface density or flux density
like the magnetic field; a 3-form is a volume density like the charge density.
Confusion may arise when it is not immediately clear whether an object is an
n-form or a d−n-form, which is important for generalization to other dimen-
sions. We distinguish the regular Hodge dual ∗ from the spatial Hodge dual
∗s, where the latter does not involve the temporal dimension. The exterior
derivative operator is d = ∂

∂t dt∧+∑
i
∂
∂xi

dxi∧, and the one with only spatial
components is ds =∑

i
∂
∂xi

dxi∧. The Leibniz rule is d(a∧b)= da∧b+(−1)ra∧db,
where a is an r-form. This can be used for partial integration.

In table 4.1 we have listed the differential forms of the relevant fields.
Some of these definitions seem perhaps unfamiliar. In particular, we are
used to thinking of the magnetic field as a vector field; however, its solenoidal
nature is typical of a two-form. This becomes even more clear when it is
expressed as the curl of the vector potential B = dsA, which holds in 3+ 0
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dimensions. Also the current density J is naturally a flux or a 2-form, but its
generalization is as a d−2-form. One way to see that this must be so, is to
write down the continuity equation in differential forms,

∂tρ+∇·J= 0 → (∂tρ+dsJ)∧dt = dj= 0. (4.60)

The current density appearing as a vector field for instance in Ohm’s law,
J=σE is actually the spatial Hodge dual of J.

We shall now write down the familiar expressions of Maxwell electrody-
namics. The Lagrangian density is a spacetime volume density. All terms
must therefore combine into d-forms. The field strength is F= dA. From this
definition it is clear that the gauge transformations A→ A+dξ, with ξ any
0-form, leave the field strength unchanged, since d2 = 0. The field strength is
contracted with its dual to obtain a d-form in the Lagrangian. The sources
couple to the gauge potential (this is another reason why the source is a d−1
form). The Maxwell action is then,

S =
∫

−F∧∗F+A∧ j. (4.61)

The second term is also invariant under the same gauge transformations,
provided that dj= 0, the continuity equation. The Euler–Lagrange equations
are,

d
∂L

∂dA
− ∂L

∂A
= 0, (4.62)

resulting in the inhomogeneous Maxwell equations,

d∗dA= d∗F=−j, (∂µFµν =−Jν). (4.63)

Applying the exterior derivative on this equation directly leads to the conti-
nuity equation, since d2 = 0. Similarly, from the definition F= dA it immedi-
ately follows that,

dF= 0, (4.64)

which are the homogeneous Maxwell equations, or in this context rather the
Bianchi identities.

Now let us repeat the reasoning of section 4.2. In the absence of monopole
sources J, we have both d∗ F = 0 and dF = 0. This implies that the field
strength has become “pure gauge”. The first of these equations still holds
when we add any 1-form ξ as ∗F→∗F+dξ. The original Bianchi identities are
not invariant under these transformations. The dual field strength ∗F turns
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into a gauge potential, and is accompanied by its own field strength K= d∗F,
which contracts with its dual in the Lagrangian. The field strength can
couple to a d−2-form source, which we anticipatively denote by JV, provided
that d∗JV = 0. Indeed,

F∧JV → F∧JV +∗dξ∧JV =F∧JV −ξ∧d∗JV =F∧JV. (4.65)

The second step is achieved by partial integration, and the last equality
holds if the vortex current is conserved, d∗ JV = 0. The action for vortices
directly sourcing the field tensor is, (with G=∗F),

S =
∫

−K∧∗K+F∧JV =
∫

−K∧∗K+G∧∗JV. (4.66)

Variation with respect to G leads to,

∗d∗dG=−JV. (4.67)

This equation corresponds to εκλµν∂
2Fµν =−JV

κλ
as in Eq. (4.43), but is valid

in any dimension. The addition of a Meissner term results in

S =
∫

−K∧∗K−G∧∗G+G∧∗JV. (4.68)

and,
∗d∗dG−G=−JV. (4.69)

This is the equation of motion for d−1-dimensional superconductors, which
have d−2-dimensional vortex world branes JV.
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Chapter 5

Type-II Mott insulators

In chapter 3 we have seen that the Bose-Mott insulator is in fact a disordered
superfluid, where the superfluid vortices have proliferated, and furthermore
that the Bose-Mott insulator supports vortices of its own, in the form of lines
of supercurrent. This we coined the type-II Bose-Mott insulator. In chapter
4 we have seen how to formulate a relativistic description of Abrikosov vor-
tices in a superconductor, and thus how to wire in electromagnetism. It is
now time to combine the acquired knowledge, and to look at vortices in the
charged Bose-Mott insulator.

The essence is very much the same as the charge-neutral case, but the
outcome is striking: lines of electric current piercing through an otherwise
insulating slab of material. These Mott vortex lines contain a quantum of
electric current, just as Abrikosov vortices have a magnetic flux quantum. In
fact, almost all of the electrodynamic properties of a type-II superconductor
are mirrored in the type-II Mott insulator, where “magnetic field” has to be
substituted for “electric current”.

There are a few notable exceptions to this principle. Firstly, the electric
current Jµ = e∗

ħ wµ is a vector quantity, whereas the magnetic field or rather
the Maxwell field strength is a 2-form. As such, the coupling to the vortex
world sheet of the current is mathematically different when compared to the
magnetic field. The reason for this is easily understood intuitively: the vor-
tex is a line of electric current, which is electric charge in motion. If such
a line moves, it is just that the microscopic charges are moving in a differ-
ent direction than ‘straight up’. Compare this to a magnetic field, which in
motion generates an electric field. Surely this is a rather different situation.
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Secondly, in a superconductor one has the true vacuum where electro-
magnetic fields are free, and the Meissner state where those fields are ex-
pelled. Now the Bose-Mott insulator mimics the Meissner state, yet for elec-
tric current instead of magnetic field; the superconductor where current is
free mimics the vacuum; but on top of that we still have the real vacuum,
and this has no counterpart in superconductivity. Therefore the physical
situation is even richer than for type-II superconductors.

In this chapter we will repeat the duality calculation for charged super-
fluids, that is, a superfluid made out of Cooper pairs. First we will present a
short exposition of the realization of such systems in actual materials. After-
wards considerable time will be spent on the nature of the Mott vortex world
sheets. Then we collect the relevant physical observables from the equa-
tions of motion. All effects are collected in a phase diagram. And lastly, we
present a host of possible experimental setups that may be able to identify
the vortices in the Mott insulator.

5.1 Charged superfluid–insulator transitions

There are several systems whose properties are principally that of charged
bosons, with either weak (superfluid) or strong (insulating) effective interac-
tions. The very well-controlled optical lattice systems mentioned before [50]
do not fall into that category as the strong repulsive interaction between
charged atoms would dominate the subtle quantum statistical effects.

5.1.1 Arrays of Josephson junctions

Since the 1990s several groups devoted their time to making structures out
of superconducting components. Most notable are the arrays of Josephson
junctions. These are two-dimensional lattices of superconducting islands
with charging energy C which are connected by weak links with Joseph-
son coupling J. These systems are remarkably well described by the Bose-
Hubbard model of §2.3, where the boson repulsion U is as the inverse charg-
ing energy 1/C. Good reviews are Refs. [55, 56].

Since they are constructed out of superconducting materials, they are of
course electrically charged. As such, they can be probed by electromagnetic
means. Also, vortices in the insulating state would be of the kind described
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in this chapter.
All in all, this seems like an ideal system to look for type-II behaviour in

the Mott insulating state, because the level of control one has in the synthe-
sis of the arrays, and techniques that have already been developed over the
past two decades. There is one big caveat however: they have always been
restricted to two-dimensional systems. It turns out to be very hard to make
truly three-dimensional lattices of this kind. Of course, the two-dimensional
version will also have Mott vortices (vortex pancakes), but that prediction is
not as striking as the real three-dimensional vortex lines.

5.1.2 Underdoped cuprate superconductors

In 1986 Bednorz and Müller discovered superconductivity in an otherwise
very poorly conducting ceramic copper-oxide material up to an unpreceden-
ted high temperature. This sparked a true frenzy of research chasing exper-
imentally after new materials with ever higher Tc’s and theoretically after
the underlying physical mechanism. Up to now, the first endeavour has pro-
gressed reasonably well, while the latter has been stuck for a long time.
However, these days most scientists in the field would agree that the uncon-
ventional properties of the cuprate (and other high-Tc) superconductors lie
more in the ‘normal’ state than in the superconducting one.

The critical temperature Tc below which superconductivity prevails is
a function of the chemical doping (adding electron or hole carriers) of the
material. The highest Tc is said to be at optimal doping (OP). With fewer
carriers it is underdoped (UD), with more it is overdoped (OD). On the over-
doped side, the normal state above Tc is much like a regular Fermi liquid
(normal metal). But the properties on the underdoped side of the cuprates
like La2−xSrxCuO4 or YBa2Cu3O7−δ are very peculiar indeed. People find all
kinds of electronic ordering [78] like stripes [79, 80], orbital currents [81]
and recently also quantum nematics [82–84]. Furthermore a second energy
gap (distinct from the superconducting gap) shows up the single-electron
spectrum, dubbed the pseudogap. See the phase diagram in figure 5.1.

A hypothesis that has many proponents is that in the pseudogap region,
electrons do already combine into preformed Cooper pairs, which causes the
energy gap by the removal of electron states, but the phase fluctuations are
too strong to induce long-range phase coherence, such that there is no super-
conducting order yet [85, 86]. Viewed from the opposite side starting from
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Figure 5.1: Sketch of the generic phase diagram of hole-doped cuprate supercon-
ductors. The only undisputed phases are the antiferromagnetic Mott insulator (AM,
yellow), superconductor (SC, red) and Fermi liquid (FL, purple). Right above the
superconducting dome is a region with electric resistivity that grows linearly with
temperature, and is therefore often referred to as strange metal (SM, white). In
green is shown the pseudogap region (PG), with the appearance of an additional gap
in the single electron response. In is unclear whether there is a phase transition or a
crossover to the strange metal. The hatched area crudely indicates where interesting
electronic ordering is found, and also for instance a large Nernst effect; this is also
the first candidate to look for type-II Mott insulators.
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the superconductor: first the phase coherence is destroyed accompanied by
the loss of superconductivity, and only at a higher temperature do the Cooper
pairs break up. If true, this implies that there is a region in the phase di-
agram with phase-disordered Cooper pairs, c.q. charged bosons. Therefore
this state would actually be a charged Bose-Mott insulator, the topic of this
chapter.

This is beneficial in two ways: firstly, this is a suitable testing ground to
go and find the type-II Mott insulator and the Mott vortices. These mate-
rials have been very well studied, and there are many techniques for both
synthesis and experimental characterization. Conversely, if the type-II Mott
behaviour were to been found, it would constitute strong evidence for the
pseudogap regime as a phase-disordered superconductor.

5.2 Vortex world sheets coupling to supercurrent

In this section we will use physical arguments to determine the correct form
of the minimal coupling of the Mott vortices to the dual gauge field and there-
fore the supercurrent. The only ingredient that we need on top of the dis-
cussion in §3.4 is that the supercurrent is now electrically charged, with the
correspondence Jµ = e∗

ħ wµ. The full calculation will be performed in the next
section; here we only want to illustrate to the reader how to view relativis-
tically the current-carrying vortex, in contrast to the Abrikosov vortices of
§4.2.

5.2.1 Limiting to 3+0 and 2+1 dimensions

To obtain the appropriate formulation in the fully relativistic 3+1 dimen-
sional case, it will prove very useful to understand first the special cases of
3+0 and 2+1 dimensions, to both of which the full model must reduce as a
lower-dimensional hyperspace cut of the 3+1 dimensional spacetime.

In 3+0 dimensions, the minimal coupling of the dual gauge field bk, which
is now a vector field, to the disorder parameter Φ is straightforward,

Lmin.coup. = |(∂k − ibk)Φ|2 = |Φ|2(∂kφ−bk)2. (5.1)

In the equations of motion, we then find,

∂kφ−bk = 0, (5.2)
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and acting on this expression with εmnk∂n leads to,

wm = εmnk∂nbk = εmnk∂n∂kφ=J V
m, (5.3)

where the last equality is the definition of the vortex current J V
m. This ex-

pression agrees with the intuition that a vortex line in a Mott insulator is
parallel to the electric current JEM

m = e∗
ħ wm.

As we mentioned before, the minimal coupling Eq. (3.34),

Lmin.coup. =
1
2
|(∂µ− iεµ∥κλbκλ)Φ|2 (5.4)

does not specialize back to back to Eq. (5.1) in 3+0 dimensions.
We need to find another form for the minimal coupling, that satisfies the

following conditions,

1. The term in the Lagrangian is equivalent to Eq. (3.23), such that only
a single additional degree of freedom arises in the Higgs phase;

2. The equations of motion reduce naturally to the cases of 3+0 and 2+1
dimensions.

The problem of matching the two-form gauge field bκλ to the one-form
condensate phase mode ∂µφ is equivalent to matching the two-form vortex
world sheet J V

κλ
to the one-form supercurrent wµ. Fortunately, we can fall

back to the limiting cases of 2+1 and 3+0 dimensions, representing a dy-
namic vortex pancake and a static vortex line respectively.

5.2.2 Static vs. dynamic vortex lines

In 3+0 dimensions a vortex line J V
l in the Mott insulator is just a static

line of electric current JEM
l ∼ wl . Since here the time dimension is absent,

the three components of the vortex line correspond to the temporal (density)
components of the vortex world sheet J V

tl . Therefore these temporal com-
ponents of world sheet surface elements correspond to the spatial current
J V

tl ∼ wl .
In 2+1 dimensions we have a vortex pancake in the spatial xy-plane,

which is therefore represented by a scalar quantity, the charge density wt.
When this vortex pancake moves, its charged vortex core moves, which is
equivalent to having an electric current as witnessed by the continuity equa-
tion ∂twt+∂kwk = 0. Since the vortex pancake can be viewed as a slice through
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Figure 5.2: (a) Static vortex line in the xy-plane; the current flows through the line.
(b) Vortex pancake moving in time (blue). The associated current in the spatial di-
rection is shown in red. (c) Static vortex line in the xz-plane moving straight up in
time. (d) A vortex line in the z-direction moving in the x-direction through time. The
last two world sheet configurations correspond to the same electromagnetic current
(red).

4-dimensional spacetime orthogonal to the third spatial direction l, this sug-
gests that J V

κl = e∗
ħ wκ.

So here we find electric current as well, but of a different origin: in 3+0
we have a static line through which the current is flowing, whereas in 2+1
dimensions the motion of the vortex itself causes electric current. Therefore
in 3+1 dimensions, we must have both of these contributions.

This is depicted in Figure 5.2. The static vortex line in the xz-plane that
moves straight up in time generates the same electric current as a vortex
line that is always along the z-direction but moves in the x-direction through
time. In other words: the current in the z-direction can originate from the
density of vorticity in the z-direction J V

tz; or from lines along x or y that
move in the z-direction, represented by J V

az, a = x, y. The total current in
the z-direction therefore is,

wz ∼J V
tz +J V

xz +J V
yz =

∑
κ

J V
κz. (5.5)
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Now for the charge density1 wt, we note that is is an undirected quan-
tity. The charge density does not care in which direction the vortex line is
pointing. Therefore the charge density gets contributions from world sheet
elements that represent the density of vorticity in all spatial directions,
wt ∼∑

κJ V
κt. Therefore we may conclude that,

wλ ∼
∑
κ

J V
κλ. (5.6)

The continuity equation for the electric current ∂λwλ = 0 is satisfied due
to the no-monopoles condition of the vortex world sheet ∂λJ V

κλ
= 0. In the

limiting cases of 3+0 or 2+1 dimensions, for each component of the current
wλ there is only a single contribution from the vortex (world) line, and then
there is no summation. The 3+1 dimensional vortex world sheet J V

κλ
reduces

to the special limits of 2+1 and 3+0 dimension as follows. The static vortex
line in 3+0 dimensions has only the density components, or J V

l = J V
tl . For

2+1 dimensions, we picture a vortex line in the z-direction, and we take a
slice in the txy-hyperplane; then J V

κ =J V
κz.

5.2.3 Minimal coupling by sum over vortex components

We propose the following minimal coupling prescription, that satisfies the
above mentioned conditions and results in Eq. (5.6),

Lmin.coup. = |(1
2

∑
α

δακ∂λ− ibκλ)Φ|2 = |Φ|2(
1
2

∑
α

δακ∂λφ−bκλ)2. (5.7)

This is the form already encountered in Eq. (3.30), and we have now pre-
sented the physical reason for this form. If we expand the square, we find,

(
1
2

∑
α

δακ∂λφ−bκλ)2 = 1
4

∑
α

δακ∂λφ
∑
β

δβκ∂λφ−bκλ
∑
α

δακ∂λφ+b2
κλ

= (
1
4

∑
αβ

δαβ)(∂λφ)2 +∑
α

φ∂λbαλ+b2
κλ

= (∂λφ)2 +b2
κλ (Lorenz gauge). (5.8)

1Even though the Mott insulator as a whole is electrically neutral, the vortex lines carry
current because the Cooper pairs can move freely. Therefore this charge density is just the
density of Cooper pairs, which is clearly quantized in units of e∗ = 2e, and the balancing positive
charge is not taken into consideration. The same applies of course in a current-carrying metal
wire.
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In the second step we have performed partial integration, and in the last
step we have enforced the Lorenz gauge condition ∂κbκλ = 0. Here we see
that this form is indeed equal to that of Eq. (3.23), where ∂λφ represents
the longitudinal component of wµ and the three degrees of freedom of bκλ
remaining after the gauge fix are the transversal ones.

Next, in the equations of motion, we will encounter the term,

∂L

∂bκλ
= 1

2

∑
α

δκα∂λφ− 1
2

∑
α

δλα∂κφ−bκλ. (5.9)

Acting on this expression with εµνκλ∂ν leads to,

1
2

∑
κ

εµνκλ∂ν∂λφ− 1
2

∑
λ

εµνκλ∂ν∂κφ−εµνκλ∂νbκλ = ∑
κ

εκµνλ∂ν∂λφ−wµ

= ∑
κ

J V
κµ−wµ. (5.10)

This precisely agrees with Eq. (5.6).
There are three details that may raise some concern. Firstly, the expres-

sion in Eq. (5.7) is not antisymmetric under the interchange κ↔λ. We could
write down a fully antisymmetric form, but that would leads to contractions
∼∑

λ∂λφ. We suspect that such terms would fall within the gauge volume or
would otherwise be dynamically constrained. But in fact, nothing requires
the term to be antisymmetric in the first place. In the relevant quantities,
such as the vortex current J V

κλ
, the antisymmetry follows automatically. The

expression in Eq. (5.9) is one example of this.
The next point is that the expression in Eq. (5.7) is not strictly gauge

invariant. The gauge transformations for the two-form dual gauge field are
Eq. (3.5). The resolution of the alternative form Eq. (3.26) was to explicitly
leave the gauge volume out of the minimal coupling. But this expression
Eq. (5.7) is to be taken gauge fixed. This is not an actual problem, as the
physical field content is dictated by the currents, as in Eq. (3.23). As of yet,
we have not found a way to balance the three gauge degrees of freedom of
the two-form gauge field with the condensate phase mode. It remains our
conviction that the minimal coupling to a vector field is rather special in this
regard.

Lastly, as mentioned in §3.4.5, there is as of yet no way to complete the
“duality squared” procedure with this form of the minimal coupling. Since
we know that the outcome will be fine using the alternate form we leave this
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aside, and focus here on the more interesting vortices in the Mott insulator
themselves.

5.3 Charged vortex duality

Here we perform the duality transformation of §2.4.7 for 3+1 dimensions.
About half of the calculation was already done in §4.3, but we now find it
convenient here to work in imaginary time.

5.3.1 Dual superconductor

Then starting with the dimensionless action of the Ginzburg–Landau super-
conductor Eq. (2.37),

SE =
∫

dτdD x − 1
2g

(∂ph
µ ϕ− Aph

µ )2 − 1
4µ

F2
µν, (5.11)

we will end up with the Euclidean version of Eq. (4.36),

Z =
∫

DJV
κλDAµF (Aµ)DbκλF (bκλ)e−

∫
Ldual , (5.12)

Ldual =
1
2

g(εµνκλ∂
ph
ν bκλ)2 −bκλJV

κλ+εµνκλ∂ph
ν bκλAph

µ − 1
4µ

F2
µν. (5.13)

Here the coupling constants are,

1
g
= Ja

ħcph
,

1
µ
= ħaD−3

µ0cphe∗2 . (5.14)

The first is always dimensionless, the last is dimensionless if D = 3, which is
the case we are interested in, and we specialize to 3+1 dimensions from now
on.

In these dimensionless units, the charge of the vortex minimal coupling
is 1, which was the reason for rescaling to these units in the first place. The
action above describes one or several individual (Abrikosov) vortex sources
that interact via the mediation of the dual gauge fields bκλ. These gauge
fields are the duality transforms of the original Goldstone modes ϕ. They re-
member that the bosons are electrically charged by also coupling to the elec-
tromagnetic field Aµ. If one were to integrate out the dual gauge fields, one
would find an action of charged vortices that couple to each other non-locally.
They would have long-range interactions were it not for the electromagnetic
fields, which induce Meissner screening.
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5.3.2 Vortex proliferation

This is however not what we are interested in at the moment. We are going
to proceed and let the vortex strings proliferate into the ‘string foam’ as ex-
plained in §3.2. The disorder parameter Φ is the ‘density of the string foam’,
and the minimal coupling to the gauge field is dictated by the considerations
of §5.2. Thus we find,

L = 1
2

g(εµνκλ∂
ph
ν bκλ)2 +εµνκλ∂ph

ν bκλAph
µ − 1

4µ
F2
µν

+1
2
|(1

2

∑
α

δακ∂λ− ibκλ)Φ|2 + ã
2
|Φ|2 + β̃

4
|Φ|4. (5.15)

Here we have added Ginzburg–Landau potential energy terms for the dual
order parameter, which we will neglect from now on. If α̃< 0, the dual order
parameter obtains an expectation value 〈Φ〉 =

√ |α̃|
β̃

≡ Φ∞. This signals the
phase transition to the Bose-Mott insulator, with the Mott gap represented
by |Φ|2.

What we would like to do, similar to the procedure in §3.4.5, is dualize the
dual phase field φ to a conserved current vµ, integrate out the smooth part,
define the Mott vortex current J V

κλ
= εκλνµ∂ν∂µφ and integrate out the current

vµ to find the direct coupling of the Mott vortex current to the supercurrent
gauge field bκλ. However, as mentioned before, I have not been able to find a
consistent way of doing it for this form of the minimal coupling. Fortunately,
the action (5.15) is sufficient to find the Mott vortex electrodynamics, just as
it was for the Abrikosov vortices in chapter 4.

5.4 Phenomenology of Mott vortices

In this section we derive observable quantities of the Bose-Mott insulator
and its vortices. This mostly follows the same reasoning as for the regular
Ginzburg–Landau model of §2.1, see also e.g. [51, ch.4].
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5.4.1 Equations of motion

We calculate the equations of motions by varying Eq. (5.15) with respect to
Φ̄, bκλ and Aµ.

(
1
2

∑
α

δκα∂
ph
λ

− ibκλ)2Φ− α̃Φ− β̃|Φ|2Φ= 0, (5.16)

−gεκλνµ∂
ph
ν wµ+|Φ|2

(1
2

∑
α

(δκα∂
ph
λ
φ−δλα∂ph

κ φ)−bκλ
)
= 1

2
εκλµνFph

µν , (5.17)

1
µ
∂µFµν =−wph

ν . (5.18)

Here we have substituted definitions of wµ = εµνκλ∂
ph
ν bκλ and Fµν = ∂µAν −

∂νAµ. The superscripts on Fph
µν and wph

µ indicate that those quantities carry a
velocity ratio in the temporal components: Fph

tn = c
cph

Ftn and wph
t = c

cph
wt. The

dimensionful versions of these equations are,

−a2(
∑
α

δκα∂
ph
λ

− i
a

ħcph
bκλ)2Φ+ α̃Φ+ β̃|Φ|2Φ= 0, (5.19)

−ga2εκλνµ∂
ph
ν wµ+|Φ|2

(1
2

∑
α

ħcph

a
(δκα∂

ph
λ
φ−δλα∂ph

κ φ)−bκλ
)
= 1

2
cphe∗εκλµνFph

µν ,

(5.20)
1
µ0
∂µFµν =− e∗

ħ wph
ν =−Jph

s ν. (5.21)

In the last equality we used the definition of the supercurrent Js
ν = e∗

ħ wν.
Note that the last two equations reduce to the equations of motion for the
superconductor in the limit |Φ|2 → 0. The last equation is the same with or
without the Mott condensate, and just reflects the generation of an electro-
magnetic field by a current. The second equation is basically the extension
of the Meissner screening of the electric current as in Eq. (4.54), but is now
sourced by Mott vortices φMV. We are now set to discuss the physical content
of these equations.

5.4.2 Maxwell equations

The last equation Eq. (5.21) is clearly the inhomogeneous Maxwell equations
for a source term Jph

s ν. This equation carries over from the superconductor,
and does not pertain as such to the Mott insulating state. The insulating
behaviour is due to the screening of the electric current, which is represented
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by the term ∼ |Φ|2. Therefore, Eq. (5.21) is just the vacuum contribution to
electric and magnetic fields generated by a current source.

5.4.3 Penetration depth

The dual penetration depth λ̃ sets the length scale up to which an electric
current penetrates in the Mott insulating region. To find it we act on Eq.
(5.20) with ερσκλ∂

ph
σ . Contracting repeated indices, and using ∂

ph
ρ wρ = 0, we

find in the dual London limit |Φ| =Φ∞,

ga2(∂ph
µ )2wρ −Φ2

∞wρ + cphe∗∂ph
µ Fph

µρ =−Φ2
∞
ħcph

a

∑
κ

J V
κρ . (5.22)

Here we used the definition of the vortex current Eq. (3.33). The interpre-
tation of this equation is as follows: a supercurrent wρ can be generated
by a vortex source J V

κρ. This current is “dual Meissner screened” by the
Mott condensate Φ∞ as witnessed by the second term; but there is also some
electromagnetic screening from the ‘backreaction’ of the induced electromag-
netic field. In order to see this, we would like to substitute Eq. (5.21) in
this equation. This is however complicated by the additional factors of c

cph
,

which will clutter up the full expression. Recall however that this electro-
magnetic screening originates from the superconductor, and must comply
with Eq. (4.54). Thus let us take the simplest case, that of static limit
with only stationary flow: all time derivatives set to zero. Then we can use
∂mFmn =−µ0 e∗

ħ wn, to find in the absence of vortex sources,

ga2∇2wn −Φ2
∞wn −

µ0e∗2cph

ħ wn = 0, or

∇2wn − ħρs

cphm∗Φ
2
∞wn − 1

λ2 wn = 0 (5.23)

Here we substituted ga2 = m∗cph/ħρs (see §2.3.6), and used the definition
of the London penetration depth λ2 = µ0e∗2ρs/m∗. So we indeed find two
contributions to screening of electric current. The first ∼ Φ2∞ is due to the
Mott insulator, and the second remembers that the system originated from
a superconductor. This is actually rather odd: the Meissner screening is due
to the fact that the superconductor wants to expel the magnetic field, which
is not true for the Mott insulator. However, let us make a crude estimate of
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the relative strengths of the screening, by inserting the numerical values,

µ0 = 4π.10−7 ≈ 10−6N/A2, e∗ ≈ 10−19C, ħ≈ 10−34Js, cph ≈ 1
300

c ≈ 106m/s,

(5.24)

we find that the relative strengths are

Mott
Meissner

≈ Φ2∞
µ0e∗2cph/ħ ≈ Φ2∞

10−6.10−38.106.1034 ≈ 104Φ2
∞. (5.25)

Now Φ2∞ is dimensionless, but as the order parameter of the Mott conden-
sate it should be surely greater than 1. Therefore the expulsion of electric
current due to the Mott term is several orders of magnitude stronger than
the Meissner screening, and for all purposes the latter may be ignored, also
eliminating our interpretative problem.

Hence the dual penetration depth of electric current in the Mott conden-
sate is λ̃=

√ ħ
cphm∗ ρsΦ2∞. It depends on many material parameters. Here, as

we often do, we encounter the combination ρsΦ
2∞, which is the product of the

superconducting order parameter and the Mott order parameter. At first,
one may think that they should be mutually exclusive, as one has either su-
perconducting order or Mott insulating order. However one must realize that
the Mott insulator is made out of repelling Cooper pairs: the larger the num-
ber of Cooper pairs, as denoted by the superfluid density ρs, the stronger the
electromagnetic effects such as screening. It is just Φ2∞ that signals the ex-
istence of the Mott state, whereas the combination ρsΦ

2∞ is the appropriate
Higgs mass.

5.4.4 Coherence length

If in Eq. (5.19) we rescale the dual order parameter Φ by extracting it by its
equilibrium value Φ∞ =

√ |α̃|
β̃

, so Φ =Φ∞Φ′, and set bκλ to zero which is true
deep within the Mott insulator, the equation reduces to,

a2

|α̃| (∂
ph
µ )2Φ′+Φ′−Φ′3 = 0. (5.26)

Hence we can define the dual coherence length ξ̃ = ap|α̃| , which depends on
the details of the dual symmetry breaking through the precise value of the
Ginzburg–Landau parameter |α̃|.
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The coherence length is rather unimportant in this story. We are primar-
ily interested in the type-II regime where vortices can arise, and then ξ̃ is
very short, perhaps even near the lattice constant. All the questions we ask
of the system are related to longer length scales. In other words, we assume
the dual London limit where |Φ| =Φ∞ is constant, and ξ̃ denotes the typical
scale over which variations of |Φ| are important.

5.4.5 Current quantization

Now we come to the most striking prediction: the existence of ‘quantized’
vortex lines of electric current. The equation (5.20) is just as the regular
Ginzburg–Landau equation Eq. (2.5), and we can imagine a closed contour
over which the change of the phase φ is a multiple of 2π, that is,∮

∂S
dxµ∂µφ= 2πN. (5.27)

We are free to choose this contour deep within the Mott insulator far away
from the vortex line, such that the electric current in suppressed wµ = 0. Now
assume there is no external electromagnetic field Fext

µν = 0, and the induced
field is very small as argued in Eq. (5.25). Then Eq. (5.20) reduces to,

1
2

∑
α

ħcph

a
(δκα∂λφ−δλα∂κφ)= bκλ. (5.28)

We restrict our attention to the case (κλ) = tl, and take the static limit in
which all time derivatives are set to zero. Thus we only look at a stationary
current flowing through a static vortex line. Then,

ħcph

2a
∂lφ= btl . (5.29)

We take the line integral of this equation as in (5.27). On the right-hand side
we invoke Stokes’ theorem (cf. §2.1.2) to find,

ħcph

2a
2πN = ħcph

2a

∮
∂S

dxl ∂lφ=
∮
∂S

dxl btl =
∫
S

dSm εmnl∂nbtl =
∫
S

dSm wm.

(5.30)
In the last step we have used the definition of the dual gauge field Eq. (3.4)
in the static limit. The right-hand side is the flux of current wm through the
surface S . Since the current is expelled from the Mott insulator, this current
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flows through the vortex line. For the electric current I which is the flux of
the current density Jm = e∗

ħ wm, this implies the quantization condition,

I0 = e∗

ħ
ħcph

2a
2πN = 1

Φ0

p
U J2π2N. (5.31)

Here Φ0 = h/e∗ is the (magnetic) flux quantum and we have substituted the
microscopic parameters

p
U J =ħcph/a from §2.3.3.

Admittedly, this is no ‘true’ quantization as the current quantum depends
on material parameters. This is however not unexpected, since, contrary to
for instance conductivity or magnetic flux, there is no combination of natural
constants that results in a unit of electric current. In any case, for a certain
material under fixed environmental conditions, the current should penetrate
through the Mott insulator in incremental steps of size of the current quan-
tum. From a duality perspective, it is nice that the current quantum is
proportional to the inverse of the flux quantum.

If the phase velocity cph is the same or similar for the Bose-Mott insulator
as for the superconductor, then we can make a quick estimate for the N = 1
quantum by inserting cph ≈ 106m/s and a = 10−10m, such that

I0 =
e∗cph

2a
2π≈ 5.10−3A, (5.32)

which seems rather large at first sight.

5.5 The phase diagram of the type-II Bose-Mott in-
sulator

We shall now collect all acquired knowledge about the type-II Bose-Mott in-
sulator in a phase diagram, figure 5.3. The phase is a function of three, or
rather four external parameters. The quantum phase transition from a su-
perconductor to a Bose-Mott insulator is dependent on the coupling constant
g ∼U /J (see §§2.3.3, 2.3.7). Next to quantum fluctuations there are thermal
fluctuations at any finite temperature T. The phase diagram is presented as
is common in the literature of quantum phase transitions: increasing quan-
tum fluctuations on the horizontal axis, and temperature on the vertical axis.

On top of this we can disturb the system by external electromagnetic
means. For the superconductor we know that applied magnetic field com-
petes with the superconducting order. And in this chapter we have learned

102 Chapter 5. Type-II Mott insulators



QC

SC BMI

ap
pli

ed
 cu

rre
nt

quantum disorder U/J

UV-cutoff
te

m
pe

ra
tu

re

ap
pli

ed
 fie

ld

Meissner
Abrikosov

insulator
current 
lines

Hc1

Hc2

Ic1

Ic2

? ?

Figure 5.3: Proposed phase diagram of the type-II Bose-Mott insulators. On the hor-
izontal axis is the strength of the quantum fluctuations that disorder the supercon-
ductor (SC) into a Bose-Mott insulator (BMI). On the vertical axis is the temperature.

In the plane there is increasing applied magnetic field H for the superconductor,
resp. applied electric current I for the Bose-Mott insulator. For both the supercon-
ductor and the Bose-Mott insulator at low applied field or current, all of it is expelled
by the (dual) Meissner effect. When the first flux or current quantum is generated
above the lower critical field Hc1 or current Ic1, the system enters in to a mixed, Abri-
kosov state. When the applied field or current exceeds the upper critical field Hc2 or
current Ic2, all of the superconductivity or insulation order is destroyed. It is unclear
what will be the resulting phase at zero temperature (see text).

At finite temperature, we expect the canonical behaviour of quantum phase tran-
sitions, with a quantum critical (QC) region right above the quantum critical point.
At high temperatures, the superconducting state goes over into the normal state. The
Bose-Mott insulator can only originate from a Bose system of Cooper pairs; breaking
up the bosons should also lead back to the normal state. When the interactions be-
tween the bosons becomes infinitely strong U →∞, the system will stay insulating.
This sets a UV-limit on the applicability of our model.
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that the equivalent effects in type-II Mott insulators are due to applied elec-
tric current. These two variables are drawn in the plane of the phase dia-
gram, magnetic field for the superconducting side, and electric current for
the insulating side.

There a lot going on here, so let us explore the diagram step by step.
We will go through to the overly well-known superconductor in some detail,
because the same reasonings will be mirrored on the insulating side.

5.5.1 Superconducting side

Surely, the superconductor holds no surprises at all. It should completely
reproduce the familiar H–T-diagram found in any textbook. That is, the
superconducting order persists below the critical temperature Tc, which is a
decreasing function of magnetic field. When, for a particular temperature,
the applied field exceeds the so-called critical field Hc, superconducting order
is completely destroyed, and we end up in the normal state (a metal for
conventional superconductors).

In a type-II superconductor, we distinguish the Meissner state below the
lower critical field Hc1, and the Abrikosov state between Hc1 and the upper
critical field Hc2. The Meissner state is just as for type-I superconductors: a
countercurrent will perfectly oppose the applied magnetic field. Above Hc1,
it is energetically favourable to let magnetic field penetrate through an Abri-
kosov vortex line. Increasing field will create more and more of these vortices
in a triangular lattice. When the applied field is so large that the vortices
start to overlap (when they are approximately spaced by the penetration
depth λ), superconductivity is destroyed.

In BCS theory, the superconducting gap decreases with temperature un-
til it vanishes at Tc. The gap is proportional to the superfluid density, i.e. the
‘strength’ of the superconducting condensate. Therefore it is natural that the
critical fields Hc1 and Hc2 are lower at higher temperatures, since it is easier
to perturb the superconducting order.

Similarly, quantum fluctuations can diminish the superconducting order.
This whole work is centred around the idea that increasing quantum disor-
der is just the growth of spontaneous creation and annihilation of vortex–
anti-vortex pairs. Therefore increasing quantum fluctuations has the same
effect as increasing thermal fluctuations: it is easier to destroy the supercon-
ducting condensate, so that the critical applied fields are lower. The situation
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for zero temperature and high applied field will be discussed at the end of
this section.

5.5.2 Insulating side

The Bose-Mott insulator basically mimics the superconductor, where applied
current takes the role of applied magnetic field. Some exceptions are fore-
seen on simple physical grounds as we proceed.

The point of departure is the no-fluctuations, no-applied current regime,
where the system is just a “boring” Bose-Mott insulator. Approaching the
quantum phase transition U /J → 1, the bosons repel each other less strongly,
such that the dual order parameter |Φ|2 shrinks, causing the critical temper-
ature or critical current to diminish. The applied electric current is as the
applied field for a superconductor: it competes with the established order.
At first, all applied current is expelled, showing purely insulating behaviour.
But in the type-II regime detailed in this chapter, above the lower critical
current Ic1, vortex lines of current will be created. The current starts to pen-
etrate in multiples of the current quantum I0, until it is so large that the
Mott order is completely destroyed. This point we call the upper critical cur-
rent Ic2. It should not be confused with the critical current in a superconduc-
tor, which destroys superconducting order by inducing a too high magnetic
field.

As opposed to the superconducting side, in the ‘atomic’ or infinite strong-
coupling limit U /J →∞, there is no way in which the Mott insulating order
can be perturbed. As such, at least formally, the insulating behaviour should
persist and no current vortex lines can be formed. This could be character-
ized as the ‘type-I’ regime of the Mott insulator. Moreover, within the lim-
its of validity of the model, this insulator will not be destroyed at any finite
temperature. Therefore we have indicated a UV-cutoff in the phase diagram,
above which our model is no longer descriptive. One could imagine for in-
stance that the Cooper pairs will break up across this cut-off, so that there
are no charged bosons to begin with.

This all seems quite straightforward, but it is actually profoundly sur-
prising. In the regular XY -model, a 2-dimensional Bose-Mott insulator ex-
ists only at zero temperature, and it is destroyed at any finite temperature
due to strong fluctuations (see e.g. [87, 88]). On the superfluid side there is
still a finite-temperature Kosterlitz–Thouless transition because there the
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interactions are logarithmically long-range, but on the insulating side the
dual gauge fields are massive. However the 3+1D Mott insulator at finite
temperature is in the 4d XY universality class, and reverts basically to the
mean-field result as it is at its upper critical dimension. The simple fact that
there is a finite-temperature phase transition in a Bose-Mott insulator, even
though it is just due to a higher dimensionality, is a novelty by itself.

5.5.3 Quantum critical regime

In this work we have not made any calculation at finite temperatures, and
all our inferences for that regime stem from established knowledge. Actually,
in the quantum disorder–temperature plane without applied field or current,
this would just be the standard superconductor–Bose-Mott insulator quan-
tum phase transition. Therefore, we expect a quantum critical point at zero
temperature and associated quantum critical regime at finite temperature.
The critical behaviour is also not part of this work.

Concurrently, it is not quite clear what happens at zero temperature
when the applied field or current grows too large. For the superconductor
one may still expect a transition to the normal state. However, the supercon-
ductor is destroyed by a large applied field because it induces a very large
countercurrent. If the normal state is a Fermi liquid, and the Fermi liquid is
intrinsically resistive, any current will immediately generate heat, making
the assumption of zero temperature invalid. Similarly, if the ‘normal’ state
is insulating as for instance in the underdoped cuprates, it is also hard to
picture how a too large current can go over into insulating behaviour.

The situation is even more clear for the Bose-Mott insulator. Once the
current permeating through the dual vortices gets too large, surely all of
the insulator is destroyed. The current flowing is actually supercurrent: the
vortex cores are locally superconducting as dictated by the duality. Therefore
a large applied current should render the type-II Bose-Mott insulator into a
superconductor. But the superconductor will be destroyed by a large current
itself.

These considerations make us postpone a definite statement on the state
of matter at zero temperature and large applied field or current. These re-
gions are therefore indicated by a question mark ? in the phase diagram.
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5.5.4 Application to underdoped cuprates

We shall briefly map this general phase diagram onto the relevant phases
of the underdoped cuprates (see figure 5.1). Surely, in real life things work
differently than as pictured in the idealized scenario.

In the cuprates the quantum fluctuations are controlled by chemical dop-
ing, and it is therefore not possible to tune along the horizontal axis within
one material sample. For each sample on the underdoped side, there is a
thermal transition from the superconducting to the pseudogap state. But
collecting data from several samples, there should also be an effective tran-
sition along the horizontal direction, which should therefore be governed by
quantum fluctuations. The quantum critical point in the phase diagram of
Fig. 5.3 does not appear as such in the cuprates—if at all present, many
people believe a quantum critical point to be hidden by the superconducting
‘dome’, and it is actually related to the transition from the (doped) Mott in-
sulating state to the Fermi liquid at large dopings, and probably of intrinsic
fermionic nature.

Still, as we mentioned in §5.1.2, there is evidence for the pseudogap re-
gion to be a phase-disordered superconductor, and therefore a Bose-Mott
insulator of repelling Cooper pairs. Thus, the transition (at a fixed finite
temperature) from the superconductor to the pseudogap should be as the
increasing quantum disorder transition of this chapter. Increasing quan-
tum disorder is the increase of the fluctuations in the superconductor phase
field. This suggests that the type-II Bose-Mott insulator may be found in the
pseudogap region, and close to the phase transition to the superconductor,
because there the Mott order parameter should be small, such that the dual
penetration depth is large and vortices can be formed. This region is crudely
indicated in Fig. 5.1.

5.6 Experimental signatures

In this chapter we have made a prediction for a new state of matter which
we named “type-II Bose-Mott insulator”. Whereas a regular (Mott) insula-
tor would either completely expel electric current, or would finally permit
current through dielectric breakdown like a capacitor, the type-II Mott in-
sulator supports vortex lines of electric current such that it may penetrate
at applied current much smaller than what would be required for complete
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breakdown. Furthermore, since the current lines form a (dual) Abrikosov
lattice, the conductivity is very inhomogeneous.

Here we outline several experimental setups that may verify the exis-
tence of such type-II Mott insulating behaviour. Every time we assume that
a clever experimentalist would be able to i) find a type-II Bose-Mott insulat-
ing material; ii) be able to make the samples as pictured; and iii) have the
right experimental probes available and under full control. The experimen-
tal setups are sketched in figure 5.4.

5.6.1 The vacua for electric current

Many effects in superconductivity appear at the boundary between the su-
perconductor and empty space. These are both ground states or ‘vacua’ of
their respective Hamiltonians. A magnetic field is free in empty space, but
Meissner screened in the superconductor. These effects have to do with the
Anderson–Higgs mechanism: photons are free in empty space but obtain
a Higgs mass in the superconductor. In this regard, for the magnetic field
also metals, dielectrics and so forth are like the vacuum, only with a differ-
ent light velocity. The screening of photons in a metal is certainly not the
Meissner effect, and the photons do not gain a mass even though they inter-
act heavily with the electrons/quasiparticles. Most clearly, a static magnetic
field can exist within a metal.

But for electric current, things are really different. We add a third vac-
uum: the type-II Bose-Mott insulator. As we have seen, electric current is
to the Mott insulator as magnetic field is to the superconductor. Continuing
the duality reasoning: the superconductor is to the Mott insulator as empty
space is to the superconductor. What we mean is: an electric current is free
in the superconductor (as long as it does not exceed the critical current) in
the sense that a persistent current may run forever. But this current obtains
a Higgs mass in the Bose-Mott insulator, just as the magnetic field does in a
superconductor (Eq. (5.1.2)).

Conversely, the relation of empty space to the Bose-Mott insulator has no
counterpart in the superconductor. As such, the situation is even richer, and
more diverse tunnelling and/or junction experiments could be conceptual-
ized. In figure 5.4, yellow is the type-II Mott-insulator, red is superconductor
and blue is empty space.

Even more vacua are to be envisaged. Both the Bose-Mott insulator and
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dual Meissner effect

(a) MI immersed in SC (b) MI with SC leads
(giant proximity effect)

(c) MI without SC

dual Josephson vortices

(d) Josephson
vortex in SC

(e) Josephson
vortex in vacuum

lower critical current

(f) SQUID

Figure 5.4: Proposed experimental setups. The type-II Bose-Mott insulator (MI) is
in yellow; the superconductor (SC) in red; and the empty space/Maxwell vacuum in
blue. The circle and arrow represent a current source.
(a) The MI is completely immersed in SC which acts as the “current vacuum”. The SC
walls should be thin as to curtail the critical current. If current vortex lines will form,
the total supercurrent will surpass this critical current. (b) A junction experiment
with a thick MI layer between SC leads. This will only succeed if it is not necessary
to have the current penetrate bit by bit from the outside, but may force it to form a
vortex line from top to bottom immediately. This setup is used in the giant proximity
effect (GPE). (c) Capacitor. Perhaps any current bias will cause vortex lines to form,
even if it is not supercurrent. Then just MI between normal leads should short-circuit
way before dielectric breakdown occurs. (d) Equivalent of Josephson vortices where
the vortex line does not form inside MI but within a narrow junction layer of SC. (e)
Perhaps the SC vacuum is unnecessary, and a dual Josephson vortex may even form
in empty space. (f) SQUID setup in which current bias in increased in very small
steps by a perpendicular magnetic field (circle with dot). Current will not flow until
the first vortex is formed. This experiment measures the lower critical current.
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the superconductor are made out of Cooper pairs, but in a normal metal
those pairs are broken up. There simply are more building blocks, especially
when making junction geometry setups.

5.6.2 Dual Meissner effect

The Mott insulator wants to expel current as all insulators do. However,
when the applied current exceeds the lower critical current Ic1, dual vortices
will form as lines of supercurrent, such that at least part of the current is
permitted to flow through the material. Similar to showing the Meissner ef-
fect by measuring the magnetization of a block of superconducting material
in the presence of a magnetic field, this dual Meissner effect for current may
be demonstrated.

As explained in §5.6.1, the immediate analogue of the superconductor
in an applied magnetic field is to immerse a block of type-II Mott insulator
in superconducting material. This is because the common understanding is
that the magnetic field lines penetrate from the outside to the centre to form
the first vortex; similarly angular momentum in a superfluid travels from
the outside in to form the first vortex. Now we have electric current which is
not supported in the Maxwell vacuum but it is in the superconductor.

Therefore the first thing to try is pictured in Fig. 5.4(a). Current is in-
duced to flow through the superconductor. Since current in a superconductor
always flows near the boundary, it must be very narrow where the Mott in-
sulator is immersed, presumably within one penetration depth λ. If the Mott
insulator were perfectly insulating, the critical current Jc for this configura-
tion would be limited by the narrow superconducting layers. But if vortices
can form, some of the current will flow through the Mott insulator, leading
to a much higher critical current.

It could also be that the current vortex lines will form even without super-
conducting leads, by just forcing regular, not super-, electric current through
the Mott insulator. This is pictured in Fig. 5.4(c), and is in fact a capacitor.
For a true insulator, current will only flow after dielectric breakdown, which
only happens for really large currents. But if vortices form, that will hap-
pen at much lower current biases. There may be additional interface effects
such as Andreev reflection, but it is our conviction that any form of electric
current bias should suffice.

It may be that the vortices will only form if the applied current is a su-
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percurrent. Then the leads should be made out of superconductor, as in Fig.
5.4(b). The signature will be the same: no current will flow for a good insu-
lator, but current will soon flow for a type-II Mott insulator. In fact, this may
have already been measured, related to the so-called giant proximity effect
(GPE). Right after the high-temperature superconductors were discovered,
people made junction setups to study their properties. An interesting type
of junction is to have a superconductor of lower Tc sandwiched between two
layers of material with higher Tc, and measure at a temperature right in be-
tween [89]. The question is whether the leads will induce superconductivity
in the middle layer which is above its Tc. Surprisingly, a supercurrent was
observed even in very thick layers, which does not conform to the regular
Josephson effect, that is ultimately caused by the overlap of exponentially
decaying wave functions. Even though there was some doubt related to the
presence impurities, the final word seem to be that the effect is real [90]. It
is also unexplained up to this day.

There is a proposal by Marchand et al. [91] that suggests that the phase
rigidity of the superconducting leads prevents vortices to unbind in the mid-
dle layer, thus retaining the superconductivity even above Tc, not unlike
the theme of this thesis. However, we suggest another mechanism: the for-
mation of vortex lines of electric current. This automatically enables the
middle layer to be very thick, because the energy cost of a vortex line grows
as the length of the line, where as all other mechanisms affect the whole
layer homogeneously, scaling as the volume. The telltale difference between
our proposal and the earlier one, is that the vortex lines will show as an
inhomogeneous distribution of conductivity, as opposed to homogeneous.

5.6.3 Dual Josephson vortices

In §4.4.3 we mentioned that, in superconductors, there can also be vortices
in Josephson junctions, which are quantized but do no have a normal core
and no core energy. This situation may be mimicked in the type-II Mott
insulator. The influence of the Mott condensate will stray just beyond the
edge of the material, so that in narrow gaps also vortices may arise. They
are parallel to the edge of the Mott insulator.

Following the argument in §5.6.1 the immediate analogue of the Joseph-
son vortex would be to have a very thin layer of superconductor between two
pieces of type-II Mott insulator as in Fig. 5.4(d). Setting a current bias along
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the layer should cause the formation of vortices, manifested as a line of elec-
tric current. Of course, current flowing through a superconductor is nothing
special, so this effect may not exist, or it may be very hard to detect. Still,
the vortices are quantized, and therefore different in nature from regular
supercurrent.

Another thing to try is to leave out the superconductor, and see whether a
vortex can form under the influence of the Mott condensate wave function in
the Maxwell vacuum (Fig. 5.4(e)). It is however hard to imagine how electric
current would flow through empty space, and this is definitely not the first
place to look for this effect. Other vacua such as a normal metal may also be
interesting.

5.6.4 Lower critical current

Instead of trying to see the vortices directly, one could also attempt to deter-
mine when the first vortex is formed, that is: what is the value of the lower
critical current Ic1? One advantage is that current is measurable to very
high precision. We propose a superconducting quantum interference device
(SQUID) setup as in figure 5.4(f). The (Josephson) junction in the SQUID is
now made of type-II Mott insulator.

Applying a magnetic field perpendicular to the loop as indicated will
induce a (persistent) current in the superconductor. Related to the phe-
nomenon of flux quantization (§2.1.2), the magnetic field will only penetrate
through the inner area when the current is actually allowed to flow. Read-
ing out the amount of field that does get through, for instance by another
SQUID, will tell how much current is flowing trough the loop. We envisage
that, while increasing applied magnetic field, at first no current will flow
until suddenly the first dual vortex will form and current does start to flow.
The point of this jump is precisely the lower critical current Ic1. This should
continue in a stepwise manner. Not only will this quantitatively determine
the value of this parameter, but the sudden jump and ladder pattern are also
qualitatively different from regular Josephson junctions.

5.6.5 Inhomogeneous conductivity

In many of the proposed setups in figure 5.4, the type-II behaviour of the
Bose-Mott insulator would show in the inhomogeneity of the conductivity.
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The typical length scale is the lattice spacing of the dual Abrikosov lattice,
which depends the dual penetration depth and the amount of vortices re-
lated to the magnitude of the applied current and the size of the current
quantum I0. These parameters in turn depend on the “strength” of the Mott
condensate Φ2∞, which varies from material to material and presumably also
with temperature. This should be calculated or measured on an individual
basis. The inhomogeneity itself is however a strong qualitative prediction.

Another problem is that the dual penetration depth λ̃ may typically be
quite large (see §5.4.3). Presumably, following intuition from regular Abri-
kosov vortex physics, this would imply that the vortex lines reside quite deep
below the edge of the Mott insulator, and all surface sensitive techniques
would suffer from this complication.

Leaving these matters aside, there are several techniques that could
measure the inhomogeneous conductivity. They should i) have high spatial
resolution to see the current lines and the insulating regions in between; ii)
have high conductivity resolution to measure the possibly low value of the
current quantum I0; and iii) be able to operate at temperatures low enough
that the quantum phase transition dominates thermal fluctuations.

Scanning tunnelling spectroscopy (STS) is a very sensitive technique
with extremely high spatial resolution. However it cannot probe further
than several lattice spacings below the surface. Microwave Impedance Mi-
croscopy (MIM) directly measures the conductivity and up to 100nm reso-
lution, but suffers the same surface limitations. Low energy electron mi-
croscopy (LEEM) measures the local electric field non-invasively, and for
insulators should be able to do so up to a reasonable depth, and with high
spatial resolution. A current problem is to cool the samples to a low enough
temperature.

In the appendix 5.A we calculate the conductivity for both the supercon-
ducting and the Bose-Mott insulating phases.

5.6.6 Foreseeable complications

There are many possible complications in all of these proposals that may
spoil a clean signature of the vortex current lines. It could be that the num-
bers simply do not work out. The current quantum I0 seems rather large
(§5.4.5), so that there will only be a few vortices deep below the surface.
Or, the applied current necessary to induce the first vortex may exceed the
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superconductor critical current density Jc.
More importantly, most Mott insulators such as the underdoped cuprates

are in fact poor insulators, meaning there will always be leak currents. This
can be understood by considering figure 2.3: each excitation of the Mott in-
sulator above the ground state immediately leads to free current carriers. As
soon as the doublon and holon are formed, there is no further energy penalty
for their hopping around. Therefore any experiment that relies on the dis-
tinction between insulating and conducting behaviour, and in particular the
lower critical current setup of Fig. 5.4(f), has to deal with this drawback.

But the primary important effect to be expected is the strong pinning of
the vortices. It is well known that the cuprates are in the ‘dirty’ limit where
the coherence length is really short. We expect the same to hold for the Mott
vortices. An Abrikosov vortex lattice can only exist because of pinning forces,
since vortices in motion dissipate energy, and any fluctuation will cause such
motion in an unpinned lattice. Indeed, the limiting factor in making high-
field superconducting magnet coils is the ability to pin the vortices.

The pinning occurs on so-called pinning centres (impurities or defects),
which are distributed unevenly throughout the material. Therefore the vor-
tices follow the pinning centres rather than the vortex lattice, and the lines
will most often not really be straight. These effects cause a large deviation
from the idealized case. We expect similar behaviour for the Mott vortices. It
may cause the vortex state to become ‘glassy’ and may in particular obscure
the transition from the purely insulating to the vortex lattice state under
applied current (at Jc1). Still, the strong non-linearity in the I–V charac-
teristic should distinguish the type-II Mott insulator from a regular (doped)
Mott insulator.

In all of our considerations, we have assumed the dual London limit
|Φ|(x) =Φ∞ (no amplitude fluctuations). This should be good in the extreme
type-II limit, but since this is all unexplored territory, one should keep a
keen eye on a less robust condensate, which may have more obfuscated sig-
natures.

5.7 Summary

We predict a new state of matter called “type-II Bose-Mott insulator”. Just
as in a type-II superconductor the Meissner effect expels magnetic field but

114 Chapter 5. Type-II Mott insulators



permits it in the form of quantized vortex flux lines, this material normally
expels electric current but permits it in the form of quantized vortex current
lines. The current quantum is not fundamental, but depends on system-
specific parameters. Otherwise, almost all the properties of type-II super-
conductors are mirrored, where magnetic field is to be replaced by electric
current. All these features are collected in a new phase diagram (Fig. 5.3).

The current vortex lines may be found in cold atoms in optical lattices, ar-
rays of Josephson junctions, but moreover in the pseudogap phase of under-
doped cuprates, which are in this context fluctuating Bose-Mott insulators
of incoherent Cooper pairs. We have proposed several experiments that may
see the current lines (Fig. 5.4). If the type-II Mott behaviour is confirmed,
this would be strong evidence of the pseudogap region as a phase-disordered
superconductor.

There may be many ways in which this idealized picture can be compli-
cated in nature. But since the study of Abrikosov vortices is over 50 years
old and still going strong, we believe that with time the current vortex lines
will show themselves just as clearly as their superconductor siblings.

5.A The conductivity of the superconductor and
Bose-Mott insulator

Here we calculate the conductivity from the quantum partition sum as the
response to an applied electric field. The conductivity σ in imaginary time τ
is defined as,

〈 ja(x,τ)〉 =
∫

dD x̃dτ̃ σab(x− x̃,τ− τ̃)Eb(x̃, τ̃). (5.33)

Here a and b are spatial vector indices; 〈. . .〉 denotes expectation value. This
equation defines the conductivity per spacetime volume, which has units of

C2

JsmD−2
1

mDs . The volume-integrated conductivity is related to the conductance
as g =σA/l in D=3, where A is the area of the conductor, and l its length. This
explains the factor 1/mD−2 in the previous expression. It is the conductance
which has the same units in any dimensions. The quantum of conductance,
which features for example in the quantum Hall effect, is e2

h .
The electric field can be expressed in terms of electromagnetic potentials,

E(x, t)=−∇V (x, t)−∂tA(x, t). (5.34)
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In our calculation, we will take the functional derivative of this expression
with respect to Aa, with a spatial only. Therefore, we will disregard the term
∼ V , since it will drop out anyway. When going to imaginary time t → iτ,
(5.34) will go over to,

E(x,τ)= i∂τA(x,τ). (5.35)

Substituting this expression in (5.33), performing a partial integration, and
taking the functional derivative on both sides gives,

δ

δAc(y,τy)
〈 ja(x,τ)〉 = δ

δAc(y,τy)

∫
dD x̃dτ̃

(− i∂τ̃σab(x− x̃,τ− τ̃)
)
Ab(x̃, τ̃)

=
∫

dD x̃dτ̃
(
i∂τσab(x− x̃,τ− τ̃)

)
δbcδ(x̃− y)

= i∂τσac(x−y,τ−τy). (5.36)

We can define the Fourier transform of the conductivity in terms of Mat-
subara frequencies ωn and wave vectors k as follows,

σab(k, iωn)=
∫

dD x̃dτ̃ e−ik·x̃e−iωnτ̃σab(x̃, τ̃)=
∫

dd x̃ e−ik·x̃σab(x̃). (5.37)

To get to the result of (5.36), multiply by the frequency,

−ωnσab(k, iωn)=
∫

dd x̃
(−ωne−ik·x̃)σab(x̃)=

∫
dd x̃

(− i∂τ̃e−ik·x̃)σab(x̃)

=
∫

dd x̃ e−ik·x̃(+ i∂τ̃σab(x̃)
)
. (5.38)

Now substituting x̃ = x− y and noticing that ∂τ f (τ) = ∂τ f (τ−τy), we have in-
deed derived the Fourier transform of (5.36).

Now the current can be retrieved from the generating functional Z,

Z =
∫

D{fields}exp
(− 1

ħSE
)
, (5.39)

where SE is the Euclidean action. It is,

〈 ja(x)〉 =−ħ 1
Z[0]

δ

δAa(x)
Z[A]. (5.40)

Indeed, when one takes the action of a Ginzburg–Landau superconductor
Eq. (2.34),

SE =
∫

dD xdτ − ħ2

2m∗ ρs
(
∂

ph
µ φ(x)− e∗

ħ Aph
µ (x)

)2, (5.41)
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one finds

〈 ja(x)〉 =−ħ(−1
ħ )(− ħ2

m∗ ρs)(− e∗
ħ )

(∇aφ(x)− e∗

ħ Aa(x)
)

= e∗ħ
m∗ |Ψ|2(∇aφ(x)− e∗

ħ Aa(x)
)
, (5.42)

which agrees with Eq. (2.7).
Now from (5.40), (5.38) and (5.36) we find,

ωnσab(k, iωn)=
∫

dd(x− y) e−ik(x−y) ħ
Z[0]

δ

δAb(y)
δ

δAa(x)
Z[A]

∣∣
A=0. (5.43)

The restriction A = 0 is taken, because we want to know the linear response
of the (electron) system; when keeping A around, one also incorporates non-
linear contributions.

5.A.1 Superconductor

We have derived the Euclidean action from the charged superfluid in (2.34),

SE =
∫

dD xdτ − ħ2

2m∗ ρs(∂ph
µ φ− e∗

ħ Aph
µ )2. (5.44)

We also need to include the Maxwell term, which we will treat in the next
section.

The temporal components involve a speed, but those components play no
role in this calculation. Using this action in the generating functional, we
find,

ωnσab(k, iωn)

=
∫

d(x− y)e−ik(x−y) ħ
Z[0]

δ

δAc(y)
(−1

ħ )(− ħ2

m∗ ρs)(− e∗

ħ )
(∇aφ(x)− e∗

ħ Aa(x)
)
Z[A]

=
∫

d(x− y)e−ik(x−y)[ e∗2

m∗ ρsδacδ(x− y)+ e∗2

m∗2 ρ
2
sħ〈∇aφ(x)∇bφ(y)〉]. (5.45)

In the last term appears the velocity–velocity correlation function. This
can be easily extracted from the generating functional in the Lorenz or the
Coulomb gauge, where the photon fields decouple from the phase velocity
∇φ, and can be disregarded for this calculation. Adding an external source
Jµ, the action to consider is,

SE =
∫

dD xdτ − ħ2

2m∗ ρs
1
2

(∂ph
µ φ)2 +Jµ∂

ph
µ φ. (5.46)
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Then,

ħ2

Z[0]
δ

δJb(y)
δ

δJa(x)
Z[J ]

∣∣
J=0 =

1
Z[0]

∫
Dφ ∇aφ(x)∇bφ(y)e−1/ħSE

= 〈∇aφ(x)∇bφ(y)〉. (5.47)

Next, we complete the square in (5.46) and integrate out the phase field to
find,

SE =
∫

dD xdτ
ħ2

2m∗ ρsφ(∂2
ph)

(
φ−2

1
ħ2

m∗ ρs∂
2
ph

∂
ph
µ Jµ

)
=

∫
dD xdτ − 1

2
m∗

ħ2ρs
∂

ph
µ Jµ

1
∂2

ph

∂
ph
ν Jν

=
∫

dD xdτddkddk′ 1
2

m∗

ħ2ρs
Jµ(k′)eik′x ∂

ph
µ ∂

ph
ν

∂2
ph

eikxJν(k)

=
∫

d4k
1
2

m∗

ħ2ρs
Jµ(−k)

kph
µ kph

ν

k2
ph

Jν(k). (5.48)

Now, by definition,

δ

δJa(x)
Jb(y)= δabδ

D+1(y− x)= δab

∫
dD+1k eik(y−x). (5.49)

Expressing Jb(y) in Fourier decomposition, one finds,

δ

δJa(x)
Jb(y)= δ

δJa(x)

∫
dD+1k eikyJb(k)=

∫
dD+1k eiky[ δ

δJa(x)
Jb(k)

]
. (5.50)

Comparing these two equations, one concludes,

δ

δJa(x)
Jb(k)= δabe−ikx. (5.51)

Now we can evaluate the velocity–velocity correlation function:

〈∇aφ(x)∇bφ(y)〉 = ħ2

Z[0]
δ

δJb(y)
δ

δJa(x)
e

−1
ħ

1
2

m∗
ħ2ρs

∫
dd k Jµ(−k)

kph
µ kph

ν

k2
ph

Jν(k)

= 1
Z[0]

δ

δJb(y)
−m∗

ħρs

∫
ddk eikx kakph

ν

k2
ph

Jν(k)Z[J ]

= −m∗

ħρs

∫
ddk eik(x−y) kakb

k2
ph

. (5.52)
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Inserting this into (5.45) one finds,

ωnσab(k, iωn)=
∫

d(x− y)e−ik(x−y) e∗2

m∗ ρs
[
δacδ(x− y)+

∫
ddk′ eik′(x−y) k′

ak′
b

k′2
ph

]
= e∗2

m∗ ρs
[
δab −

kakb
1

c2
ph
ω2

n +k2

]
. (5.53)

Now we analytically continue to real time iωn →ω+iη and invoke the Sokhost-
sky formula,

lim
η→0

1
ω+ iη

= P(
1
ω

)− iπδ(ω). (5.54)

we finally obtain,

Re
[
σab(k,ω)

]= e∗2

m∗ ρsπδ(ω)
[
δab −

kakb

− 1
c2

ph
ω2 +k2 − iηsgn(ω)

]
. (5.55)

We are especially interested in the zero-momentum conductivity. Taking
the limit k→ 0 with ω still finite the complex conductivity reads,

σab(k= 0,ω)= e∗2

m∗ ρsδab
(
πδ(ω)− i

1
ω

)
. (5.56)

This agrees for the conductivity derived from the two-fluid Drude model,
with the normal component vanishing, see e.g. [51, eq. 2.44]. The real part
of the electric conductivity is peaked at zero frequency, this is the DC con-
ductivity. The imaginary part has the standard form ∼ 1

ω
, valid at non-zero

frequencies. It can also be found from invoking the Kramers–Krönig rela-
tion. Furthermore it is only valid for frequencies corresponding to energies
below the gap; for higher energies pair-breaking events have to be taken into
account as well, like in the Mattis–Bardeen model. Since we are deep within
the superconductor ρs À 1, the approximation is valid for a large range of
frequencies.
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5.A.2 Vacuum conductivity

If there is a need to include the Maxwell term, one can derive its conductivity
contribution as follows,

SE,MW =
∫

dτdD x
−1
4µ0

(∂c
µAν−∂c

νAµ)2

=
∫

dτdD x
1

2µ0
Aµ

(
(∂c)2δµν−∂c

µ∂
c
ν

)
Aν

=
∫

dωndD k
−1
2µ0

Aµ(−k)
(
(kc)2δµν−kc

µkc
ν

)
Aν(k). (5.57)

Using this expression in the partition function, we find from (5.43),

ωnσab(k, iωn)=
∫

d(x− y)e−ik(x−y) ħ
Z[0]

δ

δAb(y)
1
µ0ħ

∫
dk̃eik̃x((k̃c)2δaν− k̃c

a k̃c
ν

)
Aν(k)Z[A]

=
∫

d(x− y)dk e−ik(x−y)+ik̃(x−y) 1
µ0

(
(k̃c)2δab − k̃c

a k̃c
b
)

= 1
µ0

(
(kc)2δab −kc

akc
b
)= 1

µ0

(
(

1
c2ω

2
n +k2)δab −kakb

)
. (5.58)

By continuation to real time one finds,

σab(k,ω)= i
1
µ0

1
ω+ iη

(
(− 1

c2ω
2 +k2)δab −kakb

)
. (5.59)

In the limit k→ 0 this reduces to, using (5.54),

σab(ω)= ε0δab
(
iω+πδ(ω)ω2)

. (5.60)

Clearly the second term vanishes for all ω, so the conductivity is purely imag-
inary, and σ(ω) = −iε0ω. This agrees with simple inspection of the Ampère–
Maxwell law for k→ 0,

0= 1
µ0

ik×B→ 1
µ0

∇×B=J+ε0∂tE→J+ iε0ωE≡J−σ(ω)E. (5.61)

The last step is the definition of the conductivity σ [cf. Eq. (5.33)].

5.A.3 Superconductor from dimensionless variables

For the sequel, it will be useful to repeat the calculation employing dimen-
sionless variables as much as possible. First, we need to define the func-
tional derivative. Take a dimensionless field f (x) which is a function of the
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dimensionful coordinate xµ. Then the functional derivative is

δ

δ f (x)
f (y)= δd(x− y). (5.62)

The right hand side has dimension 1/[x]d, so that also
[

δ
δ f (x)

]= 1/[x]d. There-
fore, one is led to equate

δ

δ f (x)
= 1

ad
δ

δ f (x′)
(5.63)

where x′ = x/a is the dimensionless length and a the lattice constant.
From the Euclidean action (2.34),

SE =
∫

dD xdτ − Ja2−D 1
2

(∂ph
µ φ− e∗

ħ Aµ)2. (5.64)

the dimensionless action,

S′
E =

∫
dD x′dτ′ − Ja

ħcph

1
2

(∂′µφ− A′
µ)2, (5.65)

is obtained by the substitutions,

x = ax′ τ= a
cph

τ′ Aµ = ħ
ae∗

A′
µ SE =ħS′

E (5.66)

Now for the conductivity (5.43),

ωnσab(k, iωn)=
∫

d(x− y)e−ik(x−y) ħ
Z[0]

δ

δAb(y)
δ

δAa(x)
Z[A]

∣∣
A=0

= aD+1

cph

∫
d(x′− y′)e−ik′(x′−y′) ħ

Z[0]( cph

aD+1

)2 (
ae∗

ħ
)2 δ

δA′
b(y′)

δ

δA′
a(x′)

Z[A′]
∣∣
A′=0 (5.67)

This expression is generally valid after the substitutions (5.66), not just for
the superconductor action (5.65). Still, for the superconductor one finds,

δ

δA′
b(y′)

δ

δA′
a(x′)

Z[A′]= Ja
ħcph

δabδ(x′− y′)+
(

Ja
ħcph

)2
〈∂′aφ(x′)∂′bφ(y′)〉. (5.68)

Following a procedure similar to (5.52), one finds the dimensionless version,

〈∂′aφ(x′)∂′bφ(y′)〉 =−ħcph

Ja

∫
dD+1k′eik′(x′−y′) k′

ak′
b

k′2 . (5.69)

5.A The conductivity of the superconductor and Bose-Mott insulator 121



For the conductivity we then find,

ωnσab(k, iωn)= cph

aD+1 ħ
Ja
ħcph

e∗2a2

ħ2

[
δab −

k′
ak′

b

k′2
]= Ja2−D e∗2

ħ2

[
δab −

kakb

k2

]
, (5.70)

which agrees with (5.53), as in D = 3 we have Ja2−D =ħ2ρs/m∗. One can now
proceed to real time just as in the previous section.

5.A.4 Bose-Mott insulator

The Bose-Mott insulator is a condensate of phase-vortices. One must express
the phase field φ in terms of dual gauge fields which couple to a dual Higgs
field. Across the phase transition, the action is (5.15),

S′
E =

∫
dτ′d3x′

1
2

g(εµνκλ∂′νb′
κλ)2 + 1

2
|Φ|2(

1
2

∑
α

δακ∂
′ph
λ
φ−b′

κλ)2

+εµνκλ∂′νb′
κλA′

µ−
1

4µ
(∂

′c
µ A′

ν−∂
′c
ν A′

µ)2. (5.71)

Again, since the conductivity is a property of the medium, we can leave out
the (vacuum) Maxwell term. We can then directly integrate out the dual
gauge fields, yielding an expression quadratic in the photon field, which can
be inserted in Eq. (5.67). Now we run into the standard problem for calcu-
lating propagators for gauge fields: the gauge invariant inverse propagator
in the Lagrangian cannot be inverted, in essence because it is a transversal
projector, and no projector but the unit matrix has an inverse. The solution is
to fix the gauge, most conveniently using the Lorenz gauge. We had already
assumed this gauge fix in going to Eq. (5.15).

The action simplifies considerably. The only catch is that in the end re-
sult, one should remember to impose the constraints ∂′µw′

µ = 0 and ∂′µA′
µ = 0

by inserting the transversal projector δµν − k′
µk′

ν/k′2 in the numerator. We
denote with a ˜ components that are Lorenz-gauge fixed. Then

(εµνκλ∂′νb′
κλ)2 =−b′

µλ(∂′2δµν−2∂′µ∂
′
ν)b′

νλ→−b̃′
κλ∂

′2 b̃′
κλ. (5.72)

Also the condensate mode ∂′ph
µ χ does not couple to the dual gauge field b′ and

does therefore not contribute to the photon correlation function. The Higgs
term is then simply 1

2 |Φ|2(b̃′
κλ

)2. We are now in a position to integrate out the
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dual gauge field,∫
dτ′d3x′ − 1

2
gb̃′

κλ∂
′2 b̃′

κλ+
1
2
|Φ|2(b̃′

κλ)2 +εµνκλ∂′νb′
κλA′

µ

=
∫

dτ′d3x′
1
2

G−1 b̃′
κλ

[
b̃′
κλ+2G εκλνµ∂

′
νA′

µ

]
=

∫
dτ′d3x′

1
2

G−1[
b̃′
κλ+G εκλνµ∂

′
νA′

µ

]2 − 1
2
εκλνµ∂

′
νA′

µG εκλσρ∂
′
σA′

ρ

→
∫

dτ′d3x′
1
2

A′
µ(δµν∂′

2 −∂′µ∂′ν)G A′
ν. (5.73)

Here we have defined the inverse dual gauge field propagator G−1 =−g∂′2 +
|Φ|2. To calculate the correlation function, we should apply a Fourier trans-
formation as in (5.48),∫

dτ′d3x′
1
2

A′
µ(δµν∂′

2 −∂′µ∂′ν)(−g∂′2 +|Φ|2)−1 A′
ν =∫

dD+1k′ − 1
2

A′
µ(−k′)

δµνk′2 −k′
µk′

ν

gk′2 +|Φ|2 A′
ν(k′). (5.74)

The conductivity is now obtained by inserting this in (5.67),

ωnσab(k, iωn)= ħcph

aD−1
e∗2

ħ2

∫
dd(x′− y′)e−ik′(x′−y′) 1

Z[0]
δ

δA′
b(y′)

δ

δA′
a(x′)

Z[A′]

= ħcph

aD−1
e∗2

ħ2

∫
dd(x′− y′)dk̄′ e−i(k′+k̄′)(x′−y′) δab k̄′2 − k̄′

a k̄′
b

gk̄′2 +|Φ|2

= 1
g
ħcph

aD−1
e∗2

ħ2

δabk′2 −k′
ak′

b

k′2 +|Φ|2/g
= e∗2ρs

m∗
δabk2 −kakb

k2 +|Φ|2/ga2 (5.75)

In the last step we reverted to dimensionful units. In the limit |Φ|2 → 0 this
reduces to the result for the superconductor (5.70). We are interested in the
DC and AC conductivity, and therefore take the limit k→ 0, to find,

σab(iωn)= e∗2ρs

m∗
1
ωn

δabω
2
n

ω2
n + c2

ph|Φ|2/ga2
≡ e∗2ρs

m∗ δab
ωn

ω2
n +M2

. (5.76)

Here we defined M2 = c2
ph

a2
|Φ|2

g . We continue to real time by iωn →ω+ iη, where
η> 0. Then,

σab(ω)= e∗2ρs

m∗ δab
−iω

−ω2 −2iωη+M2

= e∗2ρs

m∗ δab
−iω(

(ω−M)+ iη
)(

(−ω−M)+ iη
) . (5.77)
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Clearly there are poles at ω = M − iη and ω =−M + iη. Using the Sokhostsky
formula Eq. (5.54) for the pole near ω = M we find for the real part of the
conductivity,

Reσab(ω)= Ja2−D e∗2

ħ2 δab
−iω

−ω−M
(− iπδ(ω−M)

)= Ja2−D e∗2

ħ2 δab
π

2
δ(ω−M).

(5.78)
We can conclude that there are gapped poles at ω = ±M = ± cph

a

√
|Φ|2/g, and

the pole strength of each is half of that of the superconductor [cf. Eq (5.56)].

124 Chapter 5. Type-II Mott insulators



Chapter 6

Emergent gauge symmetry and duality

Breaking symmetry is easy but making symmetry is hard: this wisdom
applies to global symmetry but not to local symmetry. The study of sys-
tems controlled by emergent gauge symmetry has become a mainstream in
modern condensed matter physics. Although one discerns as a fundamen-
tal gauge symmetry only electromagnetism in the ultraviolet of condensed
matter physics, it is now very well understood that in a variety of circum-
stances gauge symmetries that do not exist on the microscopic scale control
the highly collective physics on the macroscopic scale. An intriguing but
unresolved issue is whether the gauge structures involved in the Standard
Model of high energy physics and perhaps even general relativity could be of
such an emergent kind.

Up to now we have not focussed much on the emergence of gauge sym-
metries—rather we have taken them for granted as a either an unrelated
coincidence or as a logical but still auxiliary tool in the vortex duality. This
chapter discusses some of the deeper, underlying gauge principles that not
only facilitate understanding the nature of the disordering transition, but
even provide a new viewpoint to gauge symmetry in general, possibly adding
to our comprehension of its importance.

A gauge symmetry is said to be emergent when it is not present in the
microscopic model of the constituent particles or fields, but arises in the ef-
fective theory as a collective degree of freedom. We have encountered two
examples in this work:

1. the “stay-at-home” gauge invariance associated with (doped) Mott in-
sulators, expressing a local conservation law (see §2.3.4);
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2. the global-to-local symmetry correspondence in the strong/weak (i.e.
Kramers–Wannier, S-) dualities, or the expression of the Goldstone
mode as a dual gauge field (see §§2.4.2, 3.1).

In the common perception these appear as quite different. Here we clarify
that at least in the context of bosonic physics they are actually closely re-
lated. In fact, these highlight complementary aspects of the vacuum struc-
ture, and it just depends on whether one views the vacuum either using the
canonical/Hamiltonian language (stay-at-home) or field-theoretical/Lagran-
gian (local–global duality) language.

In this chapter we shall first go through the Bose-Hubbard model/vortex–
boson duality again in §6.1, emphasizing the dual aspects of the emerging
gauge symmetries. The ability to switch back and forth between Hamil-
tonian and Lagrangian viewpoints yields some entertaining vistas on this
well-understood theory. In particular, the condensate of vortices is to be un-
derstood as a coherent superposition of all possible vortex configurations,
and we will show that this is completely equivalent as adding gauge symme-
try to phase correlations.

To make the case that it can yield new insight, we apply it in §6.2 to the
less familiar context of dualities in quantum elasticity. This deals with the
description of quantum liquid crystals in terms of dual condensates formed
from the translational topological defects (dislocations) associated with the
fully ordered crystal. Using the Lagrangian language it was argued that
such quantum nematics are equivalent to (linearized) Einstein gravity [43].
Here we will demonstrate that this is indeed controlled by the local symme-
try associated with linearized gravity: translations are gauged, turning into
infinitesimal Einstein transformations.

6.1 Vortex duality versus Bose-Mott insulators

A mainstream of the gauge theories in condensed matter physics dates back
to the late 1980s when the community was struggling with the fundamentals
of the problem of high-Tc superconductivity. It was recognized early on that
this has to do with doping the parent Mott insulators and this revived the
interest in the physics of the Mott insulating state itself [58, 92–94]. The
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point of departure is the Hubbard model for electrons,

HFH =−t
∑

<i j>σ
(ĉ†

iσ ĉ jσ+ ĉ†
jσ ĉiσ)+U

∑
i

n̂i↑n̂i↓ , (6.1)

describing fermions ĉ†
iσ on site i with spin σ, hopping on a lattice with

rate t, subjected to a strong local Coulomb interaction U. Here n̂iσ = ĉ†
iσ ĉiσ is

the fermion number operator. A much simpler problem is the Bose-Hubbard
model of §2.3. It describes spinless bosons created by b̂†

i hopping on a lattice
with a rate t subjected to an on-site repulsion U,

HBH =−t
∑
<i j>

b̂†
i b̂ j +U

∑
i

n̂2
i . (6.2)

Again n̂i = b̂†
i b̂i is the boson number operator. We assume in the remainder

that the system is at “zero chemical potential”, meaning that on average
there is an integer number of fermions or bosons n0 per site.

6.1.1 Stay-at-home gauge symmetry

Now these models are invariant under a global symmetry,

ĉ†
iσ→ ĉ†

iσeiασ or b̂†
i → b̂†

i e
iα, (6.3)

where the symmetry transformation is a scalar variable α that is constant
for all lattice sites. But in the limit U /t →∞ the hopping term vanishes, and
this symmetry is promoted to a local symmetry,

ĉ†
iσ→ ĉ†

iσeiαiσ , b̂†
i → b̂†

i e
iαi

ĉiσ→ e−iαiσ ĉiσ , or b̂i → e−iαiσ b̂i ,

n̂i =
∑
σ

ĉ†
iσ ĉiσ→ n̂i n̂i = b̂†

i b̂i → n̂i. (6.4)

One discovers that a gauge symmetry emerges which controls the physics
at long distances, while it is non-existent at the microscopic scale. This is
the point of departure of a mainstream school of thought in condensed mat-
ter physics. In the fermionic model, there is still a dynamical spin system
at work at low energies. Using various “slave-constructions” it was subse-
quently argued that quantum spin liquids characterized by fractionalized
excitations can be realized when the resulting compact U(1) gauge theory
would end up in a deconfining regime. Conversely, the spinless Bose variety
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is completely featureless since it does not seem to break a manifest symme-
try while low energy degrees of freedom are absent.

Note that at any finite U /t this gauge symmetry would be strictly bro-
ken; still at large values of this parameter it is a good idea to start from
the gauge-invariant ground state, with deviation from this state entering as
excitations.

The complete Hubbard models are defined in term of particle creation
and annihilation operators, but in the Mott insulating state, the number of
particles is locally conserved, i.e. conserved at each site separately, and only
the number operator is present in the resulting Hamiltonian. The emergence
of the gauge symmetry is caused by this local number conservation. One
could picture that the annihilation–creation combination c†

i ci is now “tied”
by emergent gauge bosons as force carriers: the particles are told to “stay at
home”. Indeed, the doped Mott insulator is described in such terms, leading
to spin-charge separation and so forth.

This emergent gauge symmetry is not restricted to lattice models. Take
for instance the effective Landau model describing the superfluid Eq. (2.1),

H =
∫

d3x
1
2
τ|∇Ψ|2 + 1

2
α|Ψ|2 + 1

4
β|Ψ|4. (6.5)

We have inserted a parameter τ for convenience. This model is invariant
under global U(1) symmetry Ψ(x) → eiαΨ(x), where α is constant in space.
But if we were to suppress the fluctuation term τ→ 0, then this would be
promoted to a local symmetry α→ α(x). In other words, in the absence of
fluctuations of the order parameter, the superfluid is indistinguishable from
a superconductor. Furthermore the rigidity of the order parameter is now no
longer enforced by a Goldstone mode, but by a local conservation law.

6.1.2 Vortex–boson duality

As detailed in §2.3, the Bose-Hubbard model at zero chemical potential can
be mapped onto the XY - or phase-only model, which in turn maps onto the
superfluid in the weak-coupling and continuum limit. We saw in §2.4 and
chapter 3 that the phase transition to the Mott insulator is then formulated
by the proliferation of topological defects, in this case vortices.

We needed to pass from the Goldstone field ϕ to its canonical conjugate,
the supercurrent wµ. This is the Noether current of the global symmetry ϕ→
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ϕ+ε. The smoothness of the Goldstone field ensures that the supercurrent
is conserved ∂µwµ = 0, which can be enforced by expressing it in terms of a
dual gauge field,

wµ = εµνλ1···λd−2∂νbλ1···λd−2 , (6.6)

which is invariant under non-compact U(1) gauge transformations,

bλ1···λd−2 → bλ1···λd−2 +∂[λ1ελ2···λd−2], (6.7)

where ελ2···λd−2 is any smooth d −3-form field. These gauge fields have the
natural interpretation as the force carriers of the interactions between vor-
tex excitations.

Once again, the global symmetry of the original model seems to be pro-
moted to a local symmetry, but surely this non-compact symmetry of the
Coulomb or superfluid phase is completely different from the compact U(1)
of the stay-at-home gauge invariance of the Higgs or Mott insulating phase.

The next step is to consider what happens across the phase transition.
The vortices proliferate into a ‘tangle of vortex world lines’ or ‘string foam’,
which is as a fluid medium minimally coupled to the dual gauge fields, which
therefore undergo an Anderson–Higgs mechanism. The long-range correla-
tions mediated by massless gauge fields now turn short-range.

6.1.3 The vortex condensate generates stay-at-home gauge

Up to this point we have just collected and reviewed some well-known re-
sults on phase dynamics. However, at first sight it might appear as if the
matters discussed in the two previous subsections are completely unrelated.
Departing from the Bose-Hubbard model the considerations of the previ-
ous subsection leave no doubt that in one or the other way the dual vortex
‘d−2-form superconductor’ can be adiabatically continued all the way to the
strongly coupled Bose-Mott insulator of the first subsection. The standard
way to argue this is by referral to the excitation spectrum. The Bose-Mott
insulator is characterized by a mass gap ∼ U (at strong coupling), and a
doublet of “holon” (vacancy) and “doublon” (doubly-occupied site) propagat-
ing excitations being degenerate at zero chemical potential (see §§2.3,2.4.5
and 3.2). The vortex superconductor is a relativistic U(1)/U(1) Higgs conden-
sate characterized by a Higgs mass (a gap) above which one finds a doublet
massive gauge bosons. In this regard there is a precise match. However,
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in the canonical formalism one also discovers the emergent U(1) invariance
associated with the sharp quantization of local number density in the Mott
insulator. What has happened to this important symmetry principle in the
vortex superconductor?

The answer is: the emergent compact U(1) gauge symmetry of the Mott
insulator is actually a generic part of the physics of the relativistic supercon-
ductor.

The argument is amazingly simple. The stay-at-home gauge does not
show up explicitly in the Higgsed action describing the dual vortex conden-
sate, for the elementary reason that all the quantities in this action are asso-
ciated with the vortices which are in turn in a perfect non-local relation with
the original phase variables. However, we know precisely what this dual su-
perconductor is in terms of those phase variables. We can resort to a first
quantized, world line description of the vortex superconductor, putting back
“by hand” the phase variables. This constitutes a tangle of world lines of
vortices, warping the original phases, and eventually we can even map that
back to a first quantized wave function written as a coherent superposition
of configurations of the phase field. To accomplish this in full one needs big
computers [32, 33], but for the purposes of scale and symmetry analysis the
outcomes are obvious.

The penetration depth λV of the dual vortex superconductor just coincides
with the typical distance between vortices. At distances much shorter than
λV the vortices do not scramble the relations between the phases at spatially
separated points and at these scales the system behaves as the ordered su-
perfluid,

〈b†(r)b(0)〉→ constant , r ¿λV , (6.8)

However, at distances of order λV and larger, the vacuum turns into a
coherent quantum superposition of “Schrödinger cat states” where there is
either none, or one, or whatever number of vortices in between the two points
0 and r whose correlation of the phases of bosons we wish to know, see Fig.
6.1. We have arrived at exposing the simple principle which is the central
result of this chapter: since the vortex configurations are in coherent superpo-
sition, the phases acquire a full compact U(1) gauge invariance. Here is how
to understand the physical concept: focus on the direction of the phase at the
origin and look at the phase arrow at some distance point r. Consider a par-
ticular configuration of the vortices, and in this realization the distant phase
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Figure 6.1: In the vortex condensate the correlation of the phase between a point A
and another point B a distance r apart is in a superposition of having zero, one or
any number of vortices in between. As such the phase at B with respect to that at
A is completely undefined: it has acquired a full gauge invariance in the sense that
any addition to the phase is an equally valid answer

will point in some definite direction which will be different from the phase
at the origin as determined by the particular vortex configuration. However,
since all different vortex configurations are in coherent superposition and
therefore “equally true at the same time”, all orientations of the phase at
point r are also “equally true at the same time” and this is just the precise
way to formulate that a compact U(1) gauge symmetry associated with φ has
emerged at distances λV.

The implication is that via Eq. (6.4) the emerging stay-at-home gauge
invariance implies that in the Higgs condensate the number density associ-
ated with the bosons condensing in the dual superfluid becomes locally con-
served on the scale λV . The Mottness therefore sets in only at scales larger
than this λV . Notice that this mechanism does in fact not need a lattice:
it is just a generic property of the field theory itself, which is independent
of regularization. In fact, the seemingly all important role of the lattice in
the standard reasoning in condensed matter when dealing with these issues
is a bit of tunnel vision. It focusses on the strong-coupling limit where for
large U, λV → a, the lattice constant. However, upon decreasing the coupling
strength, the stay-at-home gauge emerges at an increasingly longer length
scale λV, to eventually diverge at the quantum phase transition. Close to
the quantum critical point the theory has essentially forgotten about the
presence of the lattice, just remembering that it wants to conserve number
locally which is the general criterion to call something an insulator. In fact,
Mottness can exist without a lattice altogether. A relativistic superconduc-
tor living in a perfect 2+1d continuum is physically reasonable. Since duality
works in both directions, this can be in turn viewed as a quantum disordered
superfluid, where the number density associated with the bosons comprising
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the superfluid becomes locally conserved.
By inspecting closely this simple vortex duality we have discovered a

principle which might be formulated in full generality as: the coherent su-
perposition of the disorder operators associated with the condensation of the
disorder fields has the automatic consequence that the order fields acquire a
gauge invariance associated with the local quantization of the operators con-
jugate to the operators condensing in the order field theory. We suspect that
this principle might be of use also in the context of dualities involving more
complex field theories.

6.2 Quantum nematic crystals and emergent lin-
earized gravity

To substantiate this claim, let us now inspect a more involved duality which
is encountered in quantum elasticity, where the principle reveals the precise
reasons for why quantum liquid crystals have dealings with general relativ-
ity. Einstein himself already suggested the metaphor that the spacetime of
general relativity is like an elastic medium. Is there a more literal truth
behind it? In recent years Hagen Kleinert has been forwarding the view
that quite deep analogies exist between plastic media (solids with topologi-
cal defects) and Einsteinian spacetime [41, 42]. There appears room for the
possibility that at the Planck scale an exotic “solid” (the “world crystal”) is
present, turning after coarse graining into the spacetime that we experience.

It turns out that this subject matter has some bearing on a much more
practical question: what is the general nature of the quantum hydrodynam-
ics and rigidity of quantum liquid crystals? Quantum liquid crystals [82] are
just the zero temperature versions of the classical liquid crystals found in
computer displays. These are substances characterized by a partial breaking
of spatial symmetries, while the zero temperature versions are at the same
time quantum liquids. Very recently indications have been found for variety
of such quantum liquid crystals in experiment [95–100]. In the present con-
text we are especially interested in the “quantum smectics” and “quantum
nematics” found in high-Tc cuprates [84, 96–98] which appear to be also su-
perconductors at zero temperature. Such matter should be, at least in the
long-wavelength limit, governed by a bosonic field theory, and this “theory
of quantum elasticity” [40, 45, 83, 101] is characterized by dualities that are
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richer, but eventually closely related to the duality discussed in the previous
section.

Departing from the quantum crystal, the topological agents which are
responsible for the restoration of symmetry are the dislocations and discli-
nations. The disclinations restore the rotational symmetry and the topologi-
cal criterion for liquid crystalline order is that these continue to be massive
excitations. The dislocations restore translational symmetry, and these are
in crucial regards similar to the vortices of the previous section. In direct
analogy with the Mott insulator being a vortex superconductor, the super-
conducting smectics and nematics can be universally viewed as dual “stress
superconductors” associated with Bose condensates of quantum dislocations.

Using the geometrical correspondences of Kleinert [41, 42], arguments
were put forward suggesting that the Lorentz-invariant version of the su-
perfluid nematic in 2+1d is characterized by a low energy dynamics that is
the same as at least linearized gravity [43]. Very recently it was pointed out
that this appears also to be the case in the 3+1d case [102, 103]. A caveat is
that Lorentz invariance is badly broken in the liquid crystals as realized in
condensed matter physics. This changes the rules drastically and although
the consequences are well understood in 2+1d [40, 45, 83] it remains to be
clarified what this means for the 3+1d condensed matter quantum liquid
crystals. The currently unresolved issue is how the gravitons of the 3+1d
relativistic case imprint on the collective modes of the non-relativistic sys-
tems.

Here we want to focus on perhaps the most fundamental question one
can ask in this context: although general relativity is not a Yang–Mills the-
ory, it is uniquely associated with the gauge symmetry of general covari-
ance or diffeomorphisms. Quite generally, attempts to identify “analogue”
or “emergent” gravity in condensed matter systems have been haunted by
the problem that general covariance is quite unnatural in this context. The
gravity analogues currently contemplated in condensed-matterlike systems
usually get as far as to identify a non-trivial geometrical parallel transport
of the matter, that occurs in a “fixed frame” or “preferred metric” [104–111];
in other cases this issue of the mechanism of emerging general covariance is
simply not addressed [112–114]. As we shall discuss, crystals are manifestly
non-diffeomorphic. However, the relativistic quantum nematics appear to be
dynamically similar to Einsteinian spacetime. For this to be true, in one way
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or another general covariance has to emerge in such systems. How does this
work?

In close parallel with the vortex duality “toy model” of the previous sec-
tion, we will explicitly demonstrate in this section that indeed general co-
variance is dynamically generated as an emergent IR symmetry. However,
there is a glass ceiling: the geometry is only partially gauged. Only the
infinitesimal “Einstein” translations fall prey to an emergent gauge invari-
ance while the Lorentz transformations (rotations) remain in a fixed frame.
This prohibits the inclusion of black holes and so forth, but this symmetry
structure turns out to be coincident with the ‘gauge fix’ that is underlying
linearized gravity. The conclusion is that relativistic quantum nematics con-
stitute a medium that supports gravitons, but nothing else than gravitons.

For this demonstration we have to rely on the detour for the identifica-
tion of the local symmetry generation as introduced in the previous section.
Different from the Bose-Mott insulator, there is no formulation available for
the quantum nematic in terms of a simple Hamiltonian where one can di-
rectly read off the equivalent of the stay-at-home gauge symmetry. We have
therefore to find the origin of the gauging of the Einstein translations in
the physics of the dislocation Bose condensate, but this will turn out to be a
remarkably simple and elegant affair.

The remainder of this section is organized as the previous one. In section
6.2.1 we will first collect the various bits and pieces: a sketch of the way that
“dislocation duality” associates the relativistic quantum nematic state with
a crystal that is destroyed by a Bose condensate of dislocations. In section
6.2.2 we will subsequently review Kleinert’s “dictionary” relating quantum
elasticity and Einsteinian geometry, while at the end of this subsection we
present the mechanism of gauging Einstein translations by the dislocation
condensate. For simplicity we will focus on the 2+1d case; the generalities
we address here apply equally well to the richer 3+1d case.

6.2.1 The quantum nematic as a dislocation condensate

Let us first introduce the field-theoretical side [40, 45, 83, 101]. The theory of
quantum elasticity is just the 19th century theory of elasticity but now em-
bedded in the Euclidean spacetime of thermal quantum field theory. To keep
matters as simple as possible we limit ourselves to the Lorentz-invariant
“world crystal”, just amounting to the statement that we are dealing with a
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(a) Edge dislocation (b) Screw dislocation

Figure 6.2: Dislocation lines (red spheres) in the relativistic 3D “world crystal” (two
space and one time direction), formed by insertion of a half-plane of particles. Shown
in red is the contour that measures the mismatch quantized in the Burgers vector
(red arrow). If the Burgers vector is orthogonal to the dislocation line it is an edge
location; if the Burgers vector is parallel it is a screw dislocation. In non-relativistic
2+1d there are only edge dislocations, since the Burgers vector is always purely spa-
tial.

2+1d elastic medium being isotropic, both in space and time directions,

Z =
∫

Dw e−Sel ,

Sel =
∫

dτdx2
[
µwµνwµν+ λ

2
w2
µµ

]
, (6.9)

where,
wµν = 1

2
(
∂µuν+∂νuµ

)
, (6.10)

are the strain fields associated with the displacements uν of the “world crys-
tal atoms” relative to their equilibrium positions. Here µ and λ are the shear
modulus and the Lamé constant of the world crystal, respectively. At first
view this looks like a straightforward tensorial generalization of the scalar
field theory of the previous section. For the construction of the nematics one
can indeed think about the displacements as “scalar fields with flavours”
since this only involves the “Abelian sector” of the theory associated with
translations. One should keep in mind however that one is breaking Eu-
clidean space down to a lattice subgroup and this is associated with non-
Abelian, infinite and semi-direct symmetry structure: the full theory beyond
the dislocation duality is a much more complicated affair.

These issues become manifest when considering the topological defects:
the dislocations and disclinations. The dislocation is the topological defect
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(a) Disclination (b) Stack of dislocations

Figure 6.3: (a) 90◦ disclination in a square lattice. A wedge is inserted into a cut
in the lattice. There is now one lattice point with five instead of four neighbouring
sites (red); going along a contour around this point will result in an additional 90◦

rotation. The associated topological charge is the Frank vector, orthogonal to the
plane and of size 90◦. As the dislocation, in 2+1d spacetime the disclination point will
trace out a world line. (b) Disclination as a stack of dislocations. Hence a disclination
corresponds to a uniform polarization of Burgers vectors. As long as disclinations
are massive, e.g. in the quantum nematic, dislocations appear only with balanced
opposite Burgers vectors.

associated with the restoration of the translations. The dislocation can be
viewed as the insertion of a half-plane of extra atoms terminating at the
dislocation core. One immediately infers that it carries a vectorial topolog-
ical charge: the Burgers vector indexed according to the Miller indices of
the crystal. In 2+1 dimensions the dislocation is a particle (like the vortex)
and as an extra complication the Burgers vector can either lie perpendicular
[“edge dislocation”, Fig. 6.2(a)] or parallel [“screw dislocation”, Fig. 6.2(b)] to
the propagation direction of its world line. The disclination is on the other
hand associated with the restoration of the rotational symmetry. This can
be obtained by the Volterra construction: cut the solid, insert a wedge and
glue together the sides [see Fig. 6.3(a)]. This carries a vectorial charge (the
Frank vector) as well. Finally dislocations and disclinations are not inde-
pendent. On the one hand, the disclination can be viewed as a stack of dis-
locations with parallel Burgers vectors [Fig. 6.3(b)], while the dislocation
can be viewed as a disclination–antidisclination pair displaced by a lattice
constant.

Dislocations and disclinations do however have a distinguishable iden-
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tity and this enables a tight, topological definition of quantum smectic and
nematic order. A state where dislocations have spontaneously proliferated
and condensed, while the disclinations are still massive, is a quantum liquid
crystal. Since a disclination is coincident with a “uniform magnetization” of
Burgers vectors, one cannot have a net density of parallel Burgers vectors as
long as disclinations are suppressed [see Fig. 6.3(b)]. The Burgers vectors of
the dislocations in the condensate have to be anti-parallel and therefore the
dislocation breaks orientations rather than rotations, with the ramification
that the order parameter is a director instead of a vector.

Finally, when all orientations of the Burgers vectors are populated equally
in the condensate, one deals with a nematic breaking only space rotations.
When only a particular Burgers vector orientation is populated one is deal-
ing with a smectic because the translations are only restored in the direction
of the Burgers vector: the system is in one direction a superfluid and in the
other still a solid. To complete this outline, when the coupling constant is
further increased there is yet another quantum phase transition associated
with the proliferation of disclinations turning the system into an isotropic
superfluid.

Let us now review the “dislocation duality”: in close analogy with vortex
duality, this shows how crystals and liquid crystals are related via a weak–
strong duality. The requirement that disclinations have to be kept out of the
vacuum is actually a greatly simplifying factor. One follows the same dual-
ization procedure for the dislocations as for the vortices. Hence, we introduce
Hubbard–Stratonovich auxiliary tensor fields σµν, rewriting the action as,

S =
∫

dτdx2
[

1
4µ

(
σ2
µν−

ν

1+νσ
2
µµ

)
+ iσµνwµν

]
, (6.11)

where ν = λ/2(λ+µ) is the Poisson ratio. We divide the displacement fields
(having the same status as the phase field in vortex duality) in smooth and
multivalued parts uµ = usmooth

µ +uMV
µ , and integrating out the smooth strains

yields a constraint, in this case a Bianchi identity,

∂µσµν = 0 , (6.12)

The physical meaning of σµν is that they are the stress fields, which
are conserved in the absence of external stresses as in Eq. (6.12): the
above is just the stress–strain duality of elasticity theory. One now wants
to parametrize the stress fields in terms of a gauge field. Since the stress
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tensor is symmetric this is most naturally accomplished in terms of Klein-
ert’s double curl gauge fields,

σµν = εµκλενκ′λ′∂κ∂κ′Bλλ′ (6.13)

while the B’s are symmetric tensors, otherwise transforming as U(1) gauge
fields.

To maintain the analogy with the vortex duality as tightly as possible,
one can as well parametrize it in a normal gauge field, σµν = εµκλ∂κbν

λ
with

the requirement that one has to impose the symmetry of the stress tensor
explicitly by Lagrange multipliers. Using this route one finds that the mul-
tivalued strains turn into a source term ibνµJν

µ where,

JV
µν = εµκλ∂κ∂λuMV

ν , (6.14)

This is just like a vortex current carrying an extra “flavour” ν. It is the
dislocation current, where the flavour indicates the D+1 components of the
Burgers vector. Like the vortices, dislocations have long-range interactions
which are parametrized by the gauge fields b (or B), with the special effect
that these are only active in the directions of the Burgers vectors.

The double curl gauge fields have the advantage that the symmetry is
automatically built in while the “extra derivatives” enable the identification
of the disclination currents. One finds,

S =
∫

dτdx2
[

1
4µ

(
σ2
µν−

ν

1+νσ
2
µµ

)
+ iBµνηµν

]
, (6.15)

where the “stress gauge fields” B are sourced by a total “defect current”,

ηµν = εµκλενκ′λ′∂κ∂κ′wMV
λλ′ ,

= θµν−εµκλ∂κJνλ , (6.16)

where θµν is the disclination current, and ν refers to the Franck vector com-
ponent. The fact that the disclination current has “one derivative less” than
the dislocation current actually implies that disclinations are in the solid
confined—in the solid, a disclination is like a quark.

One now associates a much larger core energy to the disclinations than
to the dislocations, and upon increasing the coupling constant a loop blowout
transition will occur involving only the dislocation world lines—it is obvious
from the single curl gauge field formulation that dislocations are just like
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vortices carrying an extra “Burgers flavour”. To obtain the quantum nematic
one populates all Burgers directions equally and after some straightforward
algebra one obtains the effective action for the “Higgsed stress photons” hav-
ing the same status as Eq. (3.23) for the Mott insulator,

S =
∫

dτdx2
[
m2

nemσµν
1
∂2σµν+

1
4µ

(
σ2
µν−

ν

1+νσ
2
µµ

)
+ iBµνθµν

]
, (6.17)

where σ should be expressed in the double curl gauge field Bµν according to
Eq. (6.13). In terms of the regular gauge fields bνµ, the first term represents
a Higgs mass, while the second term is like a Maxwell term. Nevertheless,
in the nematic the disclinations still act as sources coupling to the double
curl gauge fields.

Ignoring the disclinations, one finds in 2+1d that Eq. (6.17) describes a
state is quite similar to a Mott insulator: all excitations are massive, and
one finds now a triplet of massive “photons”. These are counted as follows:
there are two propagating (longitudinal and transversal acoustic) phonons of
the background world crystal, turning into “stress photons” after dualization
and acquiring a mass in the nematic. In addition, the dislocation condensate
adds one longitudinal stress photon.

As it turns out, the rules change drastically upon breaking the Lorentz
invariance. In a crystal formed from material bosons, displacements in the
time direction uτ are absent, and this has among others the consequence
that the dislocation condensate does not couple to compressional stress. In-
stead of the incompressible nature of the relativistic state, one finds now two
massless modes in the quantum nematic: a rotational Goldstone boson asso-
ciated with the restoration of the broken rotational symmetry, and a mass-
less sound mode which can be shown to be just the zero sound mode of the
superfluid. The non-relativistic quantum liquid crystals are automatically
superfluids as well and their relation to gravity is obscured.

Turning to the 3+1d case one finds as extra complication that dislocations
turn into strings and one has to address the fact that the “stress supercon-
ductor” is now associated with a condensate of strings. One meets the same
complication as in vortex duality, which was tackled in chapter 3. The out-
come is actually quite straightforward: the effective London actions of the
type Eqs. (3.23),(6.17) have the same form regardless whether one deals
with particle or string condensates, and these enter through the Higgs term
∼σ2/∂2.
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How to interpret the 2+1d relativistic quantum nematic? There are no
low energy excitations and it only reacts to disclinations. It has actually pre-
cisely the same status as a flat Einsteinian spacetime in 2+1d that only feels
the infinitesimal vibrations associated with gravitational events far away.
Similarly, using the general relativity (GR) technology of the next section, it
is also straightforward to demonstrate [102, 103] that in 3+1d one ends up
with two massless spin-2 modes: the gravitons. To prove that it is precisely
linearized gravity, let us consider next the rules of Kleinert that allow to
explicitly relate these matters to gravitational physics.

6.2.2 Quantum elasticity field theory: the Kleinert rules

Elaborating on a old tradition in “mathematical metallurgy”, Kleinert iden-
tified an intriguing portfolio of general correspondences between the field
theory describing elastic media and the geometrical notions underlying gen-
eral relativity. In order to appreciate what comes, we need to familiarize
the reader with some of the entries of this dictionary. For an exhaustive
exposition, see Kleinert’s books on the subject [41, 42].

GR is a geometrical theory which departs from a metric gµν, such that an
infinitesimal distance is measured through,

ds2 = gµνdxµdxν , (6.18)

One now insists that the physics is invariant under local coordinate trans-
formations (general covariance) xµ → ξµ(xν); infinitesimal transformations
then are like gauge transformations of the metric,

gµν→ gµν+∂µξν+∂νξµ ≡ gµν+hµν , (6.19)

Only quantities are allowed in the theory which are invariant under
these transformations and insisting on the minimal number of gradients,
one is led to the Einstein–Hilbert action governing spacetime,

S =− 1
2κ

∫
dD xdt R

p−g , (6.20)

where g = det gµν and R the Ricci scalar, while κ is set by Newton’s constant.
Together with the part describing the matter fields, the Einstein equations
follow from the saddle points of this action.
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How to relate this to solids? Imagine that one lives inside a solid and all
one can do to measure distances is to keep track how one jumps from unit cell
to unit cell. In this way one can define a metric “internal” to the solid, and
the interesting question becomes: what is the fate of the diffeomorphisms
(“diffs”) Eq. (6.19)? In order to change the metric one has to displace the
atoms and this means that one has to strain the crystal,

gµν→ gµν+wµν , (6.21)

But the strain fields are surely not gauge fields: the elastic energy Eq.
(6.9) explicitly depends on the strain. Obviously, the crystal is non-diffeo-
morphic and it is characterized by a “preferred” or “fixed” frame. This is the
deep reason that normal crystals have nothing to do with GR.

In standard GR the objects that are invariant keep track of curvature
and these appear in the form of curvature tensors in the Einstein equations.
Linearizing these, assuming only infinitesimal diffs as in Eq. (6.19), one
finds for the Einstein tensor appearing in the Einstein equations, say in the
2+1d case to avoid superfluous labels,

Gµν = εµκλενκ′λ′∂κ∂κ′hλλ′ (6.22)

One compares this with the disclination current Eq. (6.16) and one dis-
covers that these are the same expressions after associating the strains wµν

with the infinitesimal diffs hµν. This is actually no wonder: at stake is that
the property of curvature is independent of the gauge choice for the metric.
One can visualize the curved manifold in a particular gauge fix, and this is
equivalent to the fixed frame. The issue is that curvature continues to exist
when one lets loose the metric in the gauge volume.

What is the meaning of the dislocation tensor? Cartan pointed out to
Einstein that his theory was geometrically incomplete: one has to allow also
for the property of torsion. It turns out that torsion is “Cartan-Einstein”
GR sourced by spin currents and the effects of it turn out to be too weak
to be observed (see e.g. Ref. [115]). In the present context, the torsion
tensor appearing in the equations of motions precisely corresponds with the
dislocation currents. With regard to these topological aspects, crystals and
spacetime are remarkably similar.

However, given the lack of general covariance the dynamical properties of
spacetime and crystals are entirely different. For obvious reasons, spacetime

6.2 Quantum nematic crystals and emergent linearized gravity 141



does not know about phonons while crystals do not know about gravitons,
let alone about black holes. A way to understand why things go so wrong
is to realize that the disclinations encode for curvature, and gravitons can
be viewed as infinitesimal curvature fluctuations. As we already explained,
disclinations are confined in crystals meaning that it costs infinite energy to
create curvature fluctuations in normal solids.

Let us now turn to the relativistic quantum nematics: here the situa-
tion looks much better. Gravity in 2+1d is incompressible in the sense that
the constraints do not permit massless propagating modes, the gravitons.
We also found out that disclinations are now deconfined and they appear as
sources in the effective action Eq. (6.17): this substance knows about curva-
ture. In fact, one can apply similar considerations to the 3+1d case, where
two massless spin-2 modes are present. The relativistic quantum nematic in
3+1d behaves quite like spacetime!

To make the identification even more precise, one notices that the ex-
pression for the linearized Einstein tensor Eq. (6.22) is coincident with the
expression for the stress tensor in terms of the double curl gauge field Bµν,
Eq. (6.13). But now one is dealing with gauge invariance both of Bµν and hµν
while they are both symmetric tensors. At least on the linearized level the
stress tensor is the Einstein tensor. It is now easy to show that the Higgs
term in the theory of the nematic when expressed in terms of the linearized
Einstein tensors,

σµν
1
∂2σµν =Gµν

1
∂2 Gµν

→ R, (6.23)

actually reduces to the Ricci tensor R, demonstrating that one recovers the
Einstein–Hilbert action at distances large compared to the Higgs scale. Once
more, this only holds in the linearized theory. This works in the same way
in 3+1 (and higher) dimensions which is the easy way to demonstrate that
gravitons have to be present [102, 103]. At least the linearized version of the
Einstein–Hilbert action appears to be precisely coincident with the effective
field theory describing the collective behaviour of the quantum nematic!

Although this all looks convincing there is still a gap in the conceptual
understanding of what has happened with the geometry of the crystal in the
presence of condensed dislocations. The emergence of gravity requires that
the original spacetime defined by the crystal has to become diffeomorphic.
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Figure 6.4: In the dislocation condensate (quantum nematic), the distance between
two points (green dots) is in a coherent superposition of having zero, one or any
number of half-line insertions (light blue) or dislocations (red dot) in between them,
and therefore the number of lattice spacings in between them is undefined. This
is equivalent to having the Einstein translations fully gauged: there is a diffeomor-
phism between configurations with any number of lattice spacings in between the
two points.

The fields as of relevance to the dynamics of the nematic are healthy in this
regard but they belong to the dual side. The analogy with the Mott insulator
is now helpful: to demonstrate that gravity has emerged requires the demon-
stration that the spacetime of the original crystal is diffeomorphic and that
is equivalent to demonstrating that in the vortex condensate the superfluid
phase acquires a compact U(1) gauge invariance. The diffeomorphic nature
of the stress gauge fields telling about the excitations of the quantum ne-
matic has in turn the same status as the gauge fields that render the vortex
condensate to be a superconductor.

The good news is that we can use the same “first quantization” trick that
helped us to understand the emergence of the stay-at-home gauge in the vor-
tex condensate to close this conceptual gap. As for the vortices, it is easy to
picture what happens to the metric of the crystal when the coherent super-
positions of dislocation configurations associated with the dual stress super-
conductor are present. Let us repeat the exercise at the end of the previous
section (Fig. 6.1), by comparing how two points some distance apart com-
municate with each other, but now focusing on the metric properties. This
is illustrated in Fig. 6.4: imagine that no dislocation is present between
the two points and one needs N jumps to get from one point to the other.
However, this configuration is at energies less than the Higgs mass of the
quantum nematic necessarily in coherent superposition with a configuration
where a dislocation has moved through the line connecting the two points:
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one now needs N +1 hops and since these configurations are in coherent su-
perposition “N = N +1” and the geometry is now truly diffeomorphic!

However, there is one last caveat. Although translational symmetry is
restored in the quantum nematic, the rotations are still in a fixed frame and
even spontaneously broken! This is different from full Einstein gravity: in
real spacetime also the Lorentz transformations (rotations in our Euclidean
setting) are fully gauged. In order to understand this point, let us start from
special relativity, which has the global symmetry of the Poincaré group com-
prising translations and Lorentz transformations. The translations form a
subgroup, such that translational and rotational symmetry are easily dis-
tinguishable. More precisely, the generators of translations are ordinary
derivatives ∂µ which commute [∂µ,∂ν] = 0. In many ways, going from special
to general relativity is from going from global to local Poincaré symmetry
[115]. Indeed, referring to elasticity language, it seems to make sense to
restore first translational and then rotational symmetry, ending up in a per-
fectly locally symmetric “liquid” state.

However, it has long been known that such “gauging of spacetime sym-
metry” is very intricate, which has to do with the definition of locality under
such transformations. What happens is that local coordinate transforma-
tions of the form xµ → ξµ(xν), which are in fact local translations, can also
correspond to local rotations. The local translations no longer form a sub-
group, as the generators of translations should be augmented to those of
parallel translations, defined by [116],

Dµ = ∂µ+Γ κλ
µ fκλ, (6.24)

where Γ κλ
µ is the connection and fκλ is the generator of local rotations. Such

modified derivatives do not commute, and two consecutive translations may
result in a finite rotation. Such symmetry structure is actually at the heart
at everything non-linear happening in Einstein theory including black holes.

Going back to what we now know of the quantum nematic, it is clear that
it cannot correspond to full GR, since rotational symmetry as reflected by
disclinations is still gapped. Nevertheless, the identification between quan-
tum nematics and linearized gravity is in perfect shape. Linearized gravity
is a special and somewhat pathological limit of full GR, as it only applies to
nearly globally Lorentz symmetric systems. It was quite some time ago real-
ized that such systems are symmetric under global Lorentz transformations
and infinitesimal coordinate transformations (see ch. 18,35 in Ref. [117]).
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This is equivalent to fixing the Lorentz frame globally yet allow for infinites-
imal Einstein translations. Under such conditions the equations of motion
of linearized gravity follow automatically.

Here we have demonstrated that linearized gravity—a very peculiar lim-
iting case of GR—is actually literally realized in a quantum nematic. The
deeper reason is that in a quantum nematic the rotational symmetry of
(Euclidean) spacetime is global and even spontaneously broken, while the
restoration of the translational symmetry by the dislocation condensate has
caused the fixed frame internal coordinate system of the crystal to turn into
a geometry that is characterized by a covariance exclusively associated with
infinitesimal translational coordinate transformations.

6.3 Summary and outlook

In so far as vortex duality is concerned we have presented here no more
than a clarification. Living on the “dual side”, where the Bose-Mott insula-
tor appears as just a relativistic superconductor formed from vortices, the
emerging stay-at-home local charge conservation from the canonical repre-
sentation in terms of the Mott insulating phase of the Bose-Hubbard model
is not manifestly recognizable. However, the dual vortex language contains
all the information required to reconstruct precisely the nature of the field
configurations of the “original” superfluid phase fields which are realized in
the vortex superconductor. By inspecting these we identified a very simple
but intriguing principle. The local charge conservation of the Mott insulator,
associated with the emergent stay-at-home compact U(1) gauge symmetry,
is generated in the vortex condensate by the quantum mechanical principle
that states in coherent superposition “are equally true at the same time”—
the Schrödinger cat motive.

We find this simple insight useful since it yields a somewhat more gen-
eral view on the nature of strong/weak dualities. We already emphasized
that Mott insulators as defined through the local conservation of charge do
not necessarily need a lattice. One does not have to dig deep to find an ex-
ample: our dual superconductor is just a relativistic superconductor in 2+1d,
which is in turn dual to a Coulomb phase that can also be seen as a super-
fluid. The charge associated with this superfluid is locally conserved in the
superconductor, regardless of whether the superconductor lives on a lattice
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or in the continuum.

We find the emergent gauging of translational symmetry realized in the
quantum nematic an even better example of the usefulness of this insight.
Earlier work indicated that the relativistic version of this nematic is some-
how associated with emergent gravity. Resting on the “coherent superposi-
tion” argument it becomes directly transparent what causes the gauging of
the crystal coordinates: the condensed dislocations “shake the coordinates
coherently” such that infinitesimal Einstein translations appear while the
Lorentz frame stays fixed. This emergent symmetry imposes that the collec-
tive excitations of the quantum nematic have to be in one-to-one correspon-
dence with linearized gravity.

Our message is that we have identified a mechanism for the “dynami-
cal generation” of gauge symmetry which is very simple but also intriguing
viewed from a general physics perspective: the quantum mechanics princi-
ple of states in coherent superposition being “equally true at the same time”
translates directly to the principle that the global symmetry that is broken
in the ordered state is turned into a gauge symmetry on the disordered side
just by the quantum undeterminedness of the topological excitations in the
dual condensate. This raises the interesting question: is quantum coherence
required for the emergence of local symmetry, or can it also occur in classical
systems?

This question relates directly to the spectacular recent discovery of “Dirac
monopoles” in spin ice [118]. Castelnovo, Moessner and Sondhi [119] real-
ized that the manifold of ground states (“frustration volume”) of this classical
geometrically frustrated spin problem is coincident with the gauge volume of
a compact U(1) gauge theory, with the ramification that it carries Dirac mo-
nopoles as topological excitations. All along it has been subject of debate to
what extent these monopoles can be viewed as literal Dirac monopoles in the
special “vacuum” realized in the spin ice, or rather half-bred cartoon versions
of the real thing. With our recipe at hand it is obvious how to make them
completely real: imagine the classical spin ice to fill up Euclidean space-
time, and after Wick rotation our “coherent superposition principle” would
have turned the frustration volume of the classical problem into a genuine
gauge volume since by quantum superposition all degenerate states would
be “equally true at the same time”.

The ambiguity associated with the classical spin ice monopoles is rooted
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in the role of time. In principle, by doing time-resolved measurements one
can observe every particular state in the frustration volume and this renders
these states to be not gauge equivalent. However, all experiments which
have revealed the monopoles involved large, macroscopic time scales. One
can pose the question whether it is actually possible under these conditions
to define observables that can discriminate between the “fake” monopoles
of spin ice and the monopoles of Dirac. Perhaps the answer is pragmatic:
as long as ergodicity is in charge, one can rely on the ensemble average
instead of the time average, and as long as the time scale of the experiment
is long enough such that one is in the ergodic regime, the frustration volume
will “disappear” in the ensemble average. For all practical purposes one is
then dealing with a genuinely emergent gauge symmetry which tells us that
in every regard the spin ice monopole is indistinguishable from the Dirac
monopole.
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Chapter 7

Conclusions

Now that I have presented all results in detail, it is time to review to where
this has led us. First, let us reflect on the obtained results.

7.1 Summary of results

In one sentence each, the main chapters can be summed up as follows:

(3) The vortex-unbinding transition causes the demise of current conser-
vation, and is a valid description for systems of any dimension larger
than 2;

(4) All electrodynamic phenomena related to Abrikosov vortices are com-
prised in a single equation for the vortex world sheet;

(5) There is a new state of matter, called type-II Mott insulator, which fea-
tures quantized vortices of electric current, that is directly accessible
in experiment;

(6) The gauge symmetry due to an emerging local conservation law cor-
responds to a superposition of all possible configurations of topological
defects.

7.2 Outlook

These quantitative and qualitative outcomes are of course the main results
of this thesis. However, they also provoke thought on some of the deeper
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principles surrounding ordered systems, gauge symmetry and the univer-
sality of vortex-unbinding transitions.

7.2.1 The Landau paradigm

As mentioned in §§2.1,2.2.1, ever since Landau employed an order param-
eter to describe the formation of the superfluid, this has been the prevail-
ing modus operandi in the theory of ordered states and (continuous) phase
transitions. This sometimes goes under the name of the Landau–Ginzburg–
Wilson paradigm. The most important property of the order parameter is
that it is a local variable, namely a function on every point in space.

But starting with the Kosterlitz–Thouless transition, several phase tran-
sitions have been identified that seem to fall outside of this characterization.
Thus, the KT transition is sometimes said to be a phase transition with-
out spontaneous symmetry breaking, or a phase transition of infinite order
(instead of second order). It is also often claimed that there is no order pa-
rameter for the phase across the transition. The theme of a different kind
of order really caught on with the advent of the quantum Hall effect. The
distinct quantum Hall states are characterized by a quantum number called
the Chern number, which is topological, meaning it can only be defined for
the system as a whole. From it has evolved the study of topological order,
with Xiao-Gang Wen as one of the major pioneers [120]. He argues that
also the concept of symmetry groups is too restricted to capture all phase
transitions and should be extended to projective symmetry groups [121].

To distinguish one ordered state from another it is necessary to define
some quantity which will differ for distinct ordered states. The Landau or-
der parameter fulfils this task, but because it is local, it seems not universal
enough to capture for instance topological order. It is often said that “topo-
logical order is beyond the Landau paradigm”. However throughout this
thesis and emphasized in chapter 6, we have seen that what is local in one
description is extremely non-local in the dual description. For example, the
Mott insulator is a vortex condensate, where the density of the vortex liquid
is the order parameter that obtains an expectation value, and the associated
phase variable is broken spontaneously. From the phase variable point of
view, all correlations are lost, but in dual language it is just condensation of
a local order parameter. As such, it may well be that the topological orders
for which currently no local order parameter can be defined, will be made to
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do so by a suitable duality transformation. If this turns out to be achievable,
then possibly the Landau paradigm will hold up and the intuition-pleasing
notion of a local order parameter can survive.

This is also the attitude taken in Hopf symmetry breaking [20–26]. A
Hopf algebra or quantum group is a mathematical generalization of an ordi-
nary symmetry group, that treats topological defects and particle excitations
on equal footing. Both symmetry breaking and symmetry restoration by de-
fect condensation are contained within this formalism. This should be fertile
ground for further explorations of these matters.

7.2.2 Quantum liquid crystals

As mentioned in the introduction §1.2, the original topic of this thesis was to
be the quantum liquid crystals. Next to the correspondence between quan-
tum nematics and linearized gravity (§6.2), electronic quantum liquid crys-
tals have received much attention lately, because they seem to be present in
the pseudogap phase of underdoped cuprates (§5.1.2). Therefore, they make
up an interesting and relevant topic in its own right.

The difference between classical and quantum liquid crystals is that the
latter can have superpositions of Burgers vector orientations (§6.2.1) as de-
fect condensates. Therefore it admits many more ground states than the
classical varieties. This leaves room for surprises, and it would be very use-
ful to have a complete mathematical classification of all possible quantum
condensates, analogous to the group symmetry scheme for regular ordered
states. There are 17 so-called wallpaper groups of infinite tilings of the spa-
tial plane. These would correspond to all possible two-dimensional crystals
(quantum crystals are 2+1 dimensional and do not suffer from the Mermin–
Wagner theorem). Melting such crystals by dislocation proliferation leads to
the corresponding quantum liquid crystals.

The Hopf algebra or quantum group formalism advertises its ability to
perform this classification [23–25]. It is well suited to handle the non-com-
mutativity present in the marriage between translations and rotations, and
also automatically provides the classification of topological defects in each
liquid crystal phase. The downside is that there is no recipe to list all
possible inequivalent quantum superposition condensates, so they must be
guessed and written out by hand. There may be also some mathematical
intricacies related to the infiniteness of the lattice groups (cf. Ref. [122]).
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Carrying this out for all condensates of all 17 groups seems a daunting task.
My advice would be to start with the square and triangular lattice (p4m and
p6m in crystallography language) which seem most relevant to experiment.

7.2.3 Vortex duality and fermions

All of this work so far has concerned bosonic physics only. Even the super-
conductor was treated exclusively as a Bose condensate of Cooper pairs. The
main reason is that fermions are in fact much harder to describe theoreti-
cally, all of it related to their minus signs (see e.g. Ref. [123]). Still, given
the very general considerations presented here, and the relation between
disorder in the real and order in the dual variables stressed in chapter 6,
one cannot help but think that the defect-mediated melting should prevail
also in systems other than purely bosonic.

There are several ways that may indeed establish vortex condensation
in fermionic physics. One way could be to somehow to impose the Pauli-
exclusion interactions as additional constraints in the path integral. This
had led to some interesting insights into quantum criticality [124], but does
not reveal how to continue this line of thought. Another possibility may be
to let the vortices in a bosonic (phase) field take care of the phase transition,
and wire in the fermionic physics by a separate particle species. This is the
approach take in the many slave-particle models available on the market,
see e.g. Ref. [58]. Fascinatingly, a very recent work literally employs the vor-
tex duality in the fermionic Mott insulator by mode expansion, where only
the k = 0 mode relates to the vortex condensate and all finite-momentum
modes concern the fermionic spin dynamics [94]. It would also be interest-
ing to see whether such principles may be applied to the topological Mott
insulators that are in vogue these days [125, 126].

7.2.4 Quantum vs. classical

We conclude with perhaps the most fundamental question in the realm of
condensed matter physics: Where is the border between classical and quan-
tum phenomena, if it exists at all?

It is certainly not true that quantum mechanics only manifests is itself
at energies ħ/τ> kBT, where τ is some characteristic time scale. Not only is
for instance light an inherently quantum mechanical wave/particle, but all
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materials in everyday life only exist because of quantum mechanics. What I
mean is that it is not enough to have atoms + Coulomb interaction + Pauli
exclusion. A crystal is rigid because of spontaneous symmetry breaking,
leading to long-range correlations communicated by Goldstone modes. Even
disordered systems such as glasses are dominated by this effect on other
length scales. Only truly simple liquids such as liquid nitrogen seem to fall
outside of this world, and even there Van der Waals interactions are quan-
tum mechanical in origin.

In fact, a superconductor, often referred to as a macroscopic quantum sys-
tem, is not any different in this respect from a crystal. It is just an internal
instead of an external (spacetime) symmetry that is spontaneously broken.
Again I take the point of view that any ordered system must be some sort
of condensate, and as such must be distinguishable from a completely un-
ordered system, presumably by a symmetry property. Thus a superconduc-
tor is at the basic level as classical as a crystal, or a crystal is as quantum
mechanical as a superconductor, whichever one prefers. The Goldstone mode
conveys the rigidity of the condensate. Spontaneous symmetry breaking is
caused by coupling to an enormous amount of just-above-zero-energy states
called the thin spectrum, and is therefore unavoidable in many-body physics
(see e.g. [127, 128]).

We touched upon this theme in the very last paragraph of §6.3: can we
distinguish the ‘magnetic monopole’ excitations in spin ice from true Dirac
monopoles? In fact, the experiments available at the moment cannot resolve
the difference between time-averaged and ensemble-averaged results, and
therefore see only the ‘classical’ consequences of the monopoles. This once
more suggests that the specialities of quantum mechanics lie in the role of
time. In the condensates this is not noticeable. We may conjecture that the
true dividing line between classical media, including superconductors, and
quantum stuff would manifest itself in some way by the role of time. Perhaps
whenever Wick rotation to imaginary time is possible, the ‘true’ quantum
features are obscured, or irrelevant for the final outcome.

Surely, in high-energy particle physics Wick rotation is part of the stan-
dard toolbox, and those processes are definitely purely quantum mechanical.
Or are they not? One could argue that the calculation of the outcomes of a
scattering process from the infinite past to the infinite future is just as clas-
sical a result as the propagation sound waves in a crystal, in the sense that
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the special properties of time play no role. If this is so—and I cannot at
all claim to have in any way established or even corroborated it—then only
things like anomalies are ‘truly’ quantum.

The classicalness of all condensates also underlies much confusion sur-
rounding the quantum measurement problem or “collapse of the wave func-
tion”. Nobody disputes that the statistical interpretation of quantum me-
chanics, where the probability amplitudes are meaningful in many repeti-
tions of the same experiment, is extremely accurate. This is the ensemble
average. But what happens for each individual experiment and whether
quantum mechanics has anything to say about this, is still unclear. The
problem arises in how to couple a single particle like a free electron to a con-
densate such as a photographic plate. The ground state wave function of the
condensate is as classical as can be, and not only does the quantum infor-
mation of the electron get lost in the huge amount of degrees of freedom, the
fact that spontaneous symmetry breaking has already taken place prevents
a straightforward coupling of the quantum particle to the classical system.
A very interesting proposal is that gravity prevents the quantum superposi-
tion of a heavy enough object by the mismatch of deformed spacetimes [129].
Moreover, the deeper mechanism behind this seems to be the special role of
time [130].

It is my opinion that the mysteries of the peculiar role of time are largely
unresolved. It has not only bearing on things like quantum gravity, but
definitely also on the divide between quantumness and classicalness in the
everyday world around us.
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Samenvatting

Om de verschijnselen in de natuur te beschrijven, hebben we niet alleen
de fundamentele wetten—zoals de Coulombkracht van elektromagnetische
wisselwerking—nodig, maar ook een manier om uit te leggen hoe deeltjes
zich onder die wetten collectief gedragen. Het blijkt dat elementaire deel-
tjes volledig identiek zijn, dus dat we bijvoorbeeld het ene elektron op geen
enkele manier van een andere kunnen onderscheiden. Daarnaast zijn er bui-
tengewoon veel van die identieke deeltjes, een gram water bestaat uit grof-
weg 1023 moleculen. Als we dus willen weten hoe de materie om ons heen:
vloeistoffen, tafels, koperdraden of neutronensterren zich gedragen, dan zijn
we in de gelukkige toestand dat we maar een paar simpele ingrediënten
hebben, in gigantische hoeveelheden, waardoor alle onbelangrijke effecten
vrijwel altijd uitmiddelen. Inderdaad is het mogelijk om een natuurkundige
vergelijking op te schrijven die in principe alle deeltjes en hun wisselwerkin-
gen bevat, en dus naïef gezien alle antwoorden in zich moet dragen. Maar
aangezien een systeem van al slechts drie deeltjes op dit moment wiskundig
onoplosbaar is, zou die aanpak snel vruchteloos en onmogelijk worden.

Collectief gedrag

Het is ook overbodig, wat met een allegorie goed in te zien is. Als ik een
mayonaise-uitvinder ben, is het handig om te weten hoe emulsies precies
werken, en dat lecithine in het eigeel een goede olie/water-emulgator is,
maar cholesterol een water/olie-emulgator, en dat de toevoeging van mos-
terd daardoor schier onontbeerlijk is. De kok echter, wil gewoon het recept
hebben, en de mayonaise produceren. De restauranthouder wil dat de kok
lekkere gerechten, al dan niet met mayonaise, maakt, de eigenaar wil enkel
een kwalitatief goede en efficiënte bedrijfsvoering, zich niet bekommerend
om welke ingrediënten dan ook. De gast verlangt simpelweg een smakelijke
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maaltijd. Kortom, alhoewel de geserveerde maaltijden mayonaise bevatten,
is de mate waarin dat naar voren komt in de overkoepelende beschrijving
afhankelijk van het niveau waarop je het beschouwt. Op een hoog niveau
willen we alleen het resulterende, collectieve gedrag weten, de details zijn
onbelangrijk. Een voorbeeld in de natuurkunde is bijvoorbeeld het elektrisch
geleidingsvermogen van de koperdraad, een macroscopische eigenschap die
het resultaat is van de microscopische interacties tussen al de 1023 elektro-
nen. Het allerlaagste niveau, dat van de individuele elektronen, is zo goed
als irrelevant.

Orde-parameter

Nu we hebben gezien dat het in veel gevallen een goed idee is ons alleen te
richten op het effectieve, collectieve gedrag van veel-deeltjessystemen, heb-
ben we een manier nodig om verschillende soorten gedrag te onderscheiden.
We stellen dus bijvoorbeeld de vraag: “Wat maakt een vloeistof een vloeistof
en niet een gas?” Een vloeistof heeft net zo min als een gas een regelma-
tige structuur, zoals een kristal dat wel heeft, dus dat valt af. Daarentegen
heeft een vloeistof een voorkeursdichtheid: een vloeistof zal samendrukking
tegenwerken, terwijl een gas dat niet of nauwelijks doet. De onsamendruk-
baarheid is dus een goede grootheid om een vloeistof van een gas te onder-
scheiden. Omdat de onsamendrukbaarheid van een vloeistof zeer groot is,
en van een gas veel kleiner, noemen we de vloeistof meer geordend dan een
gas.

De onsamendrukbaarheid heet in deze context de orde-parameter. Die
laatste is een grootheid of functie die nul is voor de ongeordende toestand,
en niet nul oftewel eindig voor de geordende toestand. Een groot deel van
het vakgebied dat tegenwoordig gecondenseerde materie heet, gaat over het
precies definiëren en meten van orde-parameters. Het ontstaan van een
voorkeurswaarde van de orde-parameter en daarmee de geordende toestand
heet een fase-overgang, bijvoorbeeld het condenseren van waterdamp (gas)
tot water (vloeistof).

Dit proefschrift gaat in essentie over faseovergangen. Normaal gespro-
ken wordt er gekeken naar de overgang van minder naar meer orde, zoals
in het bovenstaande voorbeeld. Maar het is ook mogelijk om te starten van-
uit een geordende toestand, bijvoorbeeld ijs, en te zien hoe dat smelt tot
in dit geval water. Hierbij gaan we dus van meer naar minder orde. Een
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Figuur 7.1: (a) Een regelmatig metaalrooster (b) Rooster met op twee plaatsen ‘dislo-
caties’ (rood) die de regelmatigheid verstoren. (c) Het volledig verloren gaan van het
rooster, oftewel smelten, is duaal gezien de opeenhoping van dislocaties.

ander voorbeeld is hoe een ijzermagneet boven 770◦C ‘smelt’ tot een niet-
magnetische toestand. Dit is een duale manier van kijken naar de faseover-
gang: in plaats van hoe individuele deeltjes zich samen ordenen, concentreer
je je op het verstoren van de totale geordende toestand. Het uitgangspunt
is precies omgekeerd, maar de uitkomsten zijn volledig equivalent en net
zo geldig. In sommige gevallen blijkt de duale manier, dus het ontstaan van
wanorde door verstoringen in tegenstelling tot het ordenen van deeltjes, veel
krachtiger dan andersom.

Vortices

Neem een paperclip in twee handen, en buig die een keer of tien. Hij zal
breken op het buigpunt. Dit komt doordat het regelmatige metaalrooster bij
iedere buiging verstoord wordt, zie figuur 7.1(b). Verantwoordelijk voor die
verstoringen zijn zogenaamde ‘dislocaties’, de eindpunten van halve rooster-
lijnen die midden in het materiaal ophouden. Deze kosten veel energie om
te maken, door de kracht die je met je handen uitoefent, maar kunnen daar-
door ook niet zomaar verdwijnen. De metaalmoeheid is dus de verzameling
van dislocaties die altijd in het materiaal aanwezig blijven. Bij het breken
van de paperclip gaan er teveel roosterverbindingen verloren om hem bijeen
te houden, zie figuur 7.1(c). Duaal gezien ontstaan er juist heel veel dislo-
caties: de teloorgang van de roosterverbindingen is dus als de opeenhoping
van dislocaties.

Een dislocatie is een zogenaamd topologisch defect, waarbij topologisch
betekent dat de effecten ervan door het hele materiaal merkbaar zijn. Een
ander elementair topologisch defect is een vortex, zie figuur 2.1 op pagina
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Figuur 7.2: Twee vortices in de vorm van een waterhoos boven de Waddenzee. Dit
zijn geen puntdeeltjes maar dynamische lijnobjecten.

21. Een kolk in je badkuip en een wervelstorm zijn ook vortices (zie figuur
7.2). De kolk bestaat alleen in de vorm van het resulterende collectieve ge-
drag van een heleboel watermoleculen, en is dus inherent niet-locaal. Dat
betekent dat je de snelheden van watermoleculen op een heleboel plekken
moet weten voordat je kunt concluderen dat er een vortex bestaat. Toch is
het wiskundig mogelijk om het middelpunt van de kolk als een locaal object
te beschouwen, net zoals we dat voor de dislocaties in figuur 7.1 ook hadden
kunnen doen.

Supergeleiding

Zoals opgemerkt op pagina iii, is het precies 100 jaar geleden dat superge-
leiding in Leiden werd ontdekt. Vrijwel alle elementaire metalen worden bij
zeer lage temperatuur supergeleidend, wat betekent dat zij i) alle elektri-
sche weerstand verliezen, en daardoor eeuwigdurende stromen kunnen her-
bergen, en ii) alle magneetvelden uit hun binnenste verdrijven. In sommige
supergeleiders, die met de ongeïnspireerde naam type-II worden aangeduid,
kan een magneetveld juist wel, in de vorm van vortexlijnen, het materiaal
binnendringen. Of een supergeleider type-II is, hangt af van het materiaal,
en is eigenlijk niet vooraf te voorspellen.

Supergeleiding is een gevolg van de collectieve wisselwerking tussen de
elektronen en het metaalrooster, en daardoor heel goed met een orde-para-
meter te beschrijven, die in feite aan ieder punt in het materiaal een (vir-
tuele) richting toewijst, oftewel een pijltje. In de supergeleidende toestand
wijzen deze pijlen alle dezelfde kant op, het is dus een geordende toestand.
Verstoringen in die orde-parameter kunnen in de vorm van vortices optre-
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den, zoals op de omslag is uitgebeeld. Dit kan onder invloed van een mag-
neetveld, maar kan ook spontaan gebeuren. De fase-overgang van superge-
leidend naar ‘normaal’ kunnen we duaal dus opvatten als de opeenhoping
van vortices. In termen van die vortices belanden we dan juist in een (du-
aal) geordende toestand, die we vortexvloeistof noemen, omdat die ook een
eindige onsamendrukbaarheid heeft.

Dit proefschrift

In dit proefschrift wordt de duale beschrijving van fase-overgangen, dus het
verstoren van ordening door de opeenhoping van vortices, volledig omarmd
en vervolgens uitgebreid.

Hoofdstuk 3 omschrijft de meest fundamentele vooruitgang: het genera-
liseren van deze vortex-dualiteit van twee naar drie ruimtedimensies plus
tijd als vierde dimensie (dit heet “3+1” dimensies). In het platte vlak, dus
in twee dimensies, is een vortex of dislocatie als een puntdeeltje. Maar net
als de wervelstorm is een vortex in drie dimensies als een lijnvormig ob-
ject. Je kunt je wel voorstellen dat een beschrijving van puntdeeltjes veel
eenvoudiger is dan een beschrijving van lijnen (snaren), die zelf ook weer
kunnen trillen en vervormen. Inderdaad waren de fase-overgangen in de
duale, vortex-beschrijving tot op heden alleen beschikbaar in twee dimen-
sies. Ik laat voor het eerst zien hoe dat werkt in drie dimensies. Een echte
beschrijving van wat er met die vortexlijnen gebeurt is te ingewikkeld, maar
we voorspellen dat het collectieve gedrag van die lijnen in feite precies het-
zelfde is als het collectieve gedrag van puntdeeltjes. Omdat we dit via de
dualiteit direct staven aan de gewone (niet-duale) beschrijving van een een-
voudig, veelgebruikt model, is deze voorspelling zeer plausibel.

Als je een puntdeeltje door de tijd volgt zal je een ‘lijn in de geschie-
denis’ uittekenen, net zoals de condensatiestrepen van een vliegtuig in de
lucht. Dit heet een wereldlijn. Maar als je een lijnobject in de tijd volgt,
krijg je een tweedimensionaal wereldoppervlak. Deze worden in de natuur-
kunde van elementaire deeltjes veelvuldig gebruikt, maar in de geconden-
seerde materie nauwelijks. In onze 3+1-dimensionale vortex-dualiteit zijn
vortex wereldoppervlakken aan de orde van de dag. Maar omdat de kennis
erover beperkt is, leek het een goed idee deze eerst toe te passen op het be-
kende probleem van de magnetische vortices in supergeleiders. Dit levert
een fraaie en compacte wiskundige beschrijving ervan op, die alle bekende
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effecten gerelateerd aan zulke vortices in één enkele vergelijking kan vat-
ten (vergelijking (4.43) in hoofstuk 4). Deze wereldoppervlakbenadering is
zo aantrekkelijk dat zij zelfs in het onderwijs over vortices in supergeleiders
gebruikt zou kunnen worden.

De algemene generalisatie van vortex-dualiteit in hogere dimensies van
hoofdstuk 3 wordt in hoofdstuk 5 toegepast op het specifieke geval van su-
pergeleiders. De supergeleidende toestand is geordend, en die orde wordt
verstoord door de toename van vortices. Uiteindelijk zullen we door de fase-
overgang in een elektrisch isolerende toestand genaamd Mott isolator te-
recht komen. Daarin hebben de ladingsdragers onderling een sterke afsto-
tende wisselwerking en komen daardoor ‘vast’ te zitten, zodat ze niet meer
vrij kunnen bewegen en lading transporteren. Volgens de vortex-dualiteit
heeft deze isolerende toestand weer zijn eigen vortices. Deze zijn gequanti-
seerde lijnen van elektrische stroom. Dus net zoals een supergeleider mag-
neetveld verdrijft, maar er vortexlijnen van magneetveld doorheen kunnen
gaan, verdrijft een Mott isolator elektrische stroom maar blijkt wel stroom-
draadjes te vormen onder invloed van een van buitenaf opgelegde stroom.
Het woord ‘gequantiseerd’ betekent dat de hoeveelheid stroom door ieder
draadje niet variabel is, maar een vaste waarde heeft. De totale stroom kan
dus alleen toenemen door meer vortexlijnen te maken, niet door de stroom
per lijn te verhogen. Ook kan de stroom pas gaan lopen als de eerste vortex-
lijn gevormd wordt, dus boven een bepaalde drempelwaarde voor de stroom.
Dit is een vrij harde voorspelling, en in figuur 5.4 op pagina 109 wordt een
aantal experimenten gesuggereerd dat dit nieuwe, verrassende fenomeen
zou moeten kunnen bevestigen. Het mooiste wat je als theoreticus kan be-
reiken, is het voorspellen van een nieuw natuurverschijnsel dat vervolgens
experimenteel bevestigd wordt.

Het laatste hoofdstuk 6 is meer inzichtelijk dan voorspellend van toon.
Enkele achterliggende principes die zich in de vortex-dualiteit steeds opdrin-
gen, worden toegelicht en met elkaar verbonden. Deze principes zijn wiskun-
dig van aard—en daardoor wat lastiger in een paar regels uit te leggen—
maar onthullen belangrijke structuren die ten grondslag liggen aan het ge-
drag van natuur zoals wij die ervaren. Het gaat in feite over behouden groot-
heden, maar vooral over hoe die zich aan weerszijden van de vortex-dualiteit
manifesteren. Gebruikmakend van deze algemene principes kunnen we een
eerste uitbreiding voorzien: die naar quantum kristallen en hoe die door
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opeenhoping van dislocaties smelten tot quantum vloeibare kristallen. De
vortex-dualiteit is zo ruimer toepasbaar dan alleen op supergeleiders, en
lijkt te moeten gelden voor de meeste orde–wanorde fase-overgangen.
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